CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
20MCA261	OPERATIONS RESEARCH	ELECTIVE	3	1	0	4

Preamble: This course introduces the concepts of linear programming problems. The topics treated in this course have applications in real life problems.

Prerequisite: Nil

Course Outcomes: After completion of the course the student will be able to

CO No.	Course Outcome (CO)	Bloom's Category Level
CO 1	Solve different types of Linear Programming Problems.	Level 3:
	71 6 6	Apply
CO 2	Apply the concept of linear programming problems in real	Level 3:
CO 2	life.	Apply
CO 2	Solve different decision-making problems using	Level 3:
CO 3	optimization techniques.	Apply
CO 4	Use PERT and CPM to analyse project network	Level 3:
CO 4	management.	Apply
CO. 5	Identify suitable queuing model and solve queuing	Level 3:
CO 5	problems.	Apply

Mapping of Course Outcomes with Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	3	1	1	-	-	2	-	-	ı	-	ı
CO 2	3	3	3	1	-	-	2	-	-	1	-	ı
CO 3	3	3	3	1	-	-	2	-	-	1	-	ı
CO 4	3	3	1	1	-	-	2	2	-	-	-	-
CO 5	3	3	3	-	-	-	2	-	-	-	-	-

3/2/1: High/Medium/Low

Assessment Pattern

Bloom's Category Levels	Contin Assess Tests		End Semester Examination	
	1	2		
Level 1: Remember	10	10	10	
Level 2: Understand	20	20	20	
Level 3: Apply	20	20	30	
Level 4: Analyse				
Level 5: Evaluate				
Level 6: Create				

Mark Distribution

Total Marks	Continuous Internal Evaluation (CIE)	End Semester Examination (ESE)	ESE Duration
100	40	60	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 8 marks
Continuous Assessment Test (2 numbers) : 20 marks
Assignment/Quiz/Course project : 12 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 compulsory short answer questions, 2 from each module. Each question carries 3 marks. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 6 marks

Sample Course Level Assessment Questions

Course Outcome 1 (CO 1):

- 1. Define slack variable, surplus variable and optimal basic feasible solution.
- 2. Obtain all basic feasible solution of the set of equations:

a)
$$2x_1 + 3x_2 + 4x_3 + x_4 = 2$$

b)
$$x_1 + x_2 + 7x_3 + x_4 = 4$$

3. Solve by Big M method

Maximise
$$Z = 6x_1 - 3x_2 + 2x_3$$

Subject to $2x_1 + x_2 + x_3 \le 16$
 $3x_1 + 2x_2 + x_3 \le 18$

$$x_1 - 2x_2 \ge 8$$

 $x_1, x_2, x_3 \ge 0$

Course Outcome 2 (CO 2):

1. Construct the dual of

Maximise
$$Z = 3x_1 + 17x_2 + 9x_3$$

Subject to $x_1 - x_2 + x_3 \ge 3$
 $-3x_1 + 2x_2 \le 1$
 $x_1, x_2, x_3 \ge 0$

- 2. Prove that the dual of the dual is the primal
- 3. Solve using the principle of duality

Minimise
$$Z = 3x_1 + 5x_2$$

Subject to $2x_1 + 8x_2 \ge 40$
 $3x_1 + 4x_2 \ge 50$
 $x_1, x_2 \ge 0$

Course Outcome 3 (CO 3):

- 1. Explain North West Corner method
- 2. Solve the following transportation problem

	1	2	3	Supply	
1	2	7	4	5	
2	3	3	1	8	
3	5	4	7	7	
4	1	6	2	14	
Demand	7	9	18	34	

3. Solve the assignment problem

	I	II	III	IV
A	16	10	14	11
В	14	11	15	15
С	15	15	13	12
D	13	12	14	15

Course Outcome 4 (CO 4):

- 1. Explain critical path analysis.
- 2. A project consists of series of tasks labelled A, B, ..., H, I with the following relationships (W < X, Y means X and Y cannot start until W is completed; X, Y < W means W cannot start until both X and Y are completed). With this notation construct the network diagram having the following constraints:

$$A < D, E;$$
 $B, D < F;$ $C < G; B, G < H;$ $F, G < I.$

Find also the minimum time of completion of the project, when the time (in days) of completion of each task is as follows:

Task:	A	В	C	D	E	F	G	Н	I
Time:	23	8	20	16	24	18	19	4	10

3. A project consists of eight activities with the following relevant information.

Activity		Immediate	Esti	mated duration (d	lays)
	1	predecessor	Optimistic	Most likely	Pessimistic
A			IVE	KSII	7
В			1	4	7
С		-	2	2	8
D		A	1	1	1
Е		В	2	5	14
F		С	2	5	8
G		D, E	3	6	15
Н		F, G	1	2	3

- (i) Draw the PERT network and find out the expected project completion time.
- (ii) What duration will have 95% confidence for project completion?
- (iii) If the average duration for activity F increases to 14 days, what will be its effects on the expected project completion time which will have 95% confidence?

(For standard normal Z = 1.645, area under the standard normal curve from 0 to Z is 0.45)

Course Outcome 5 (CO 5):

- 1. Explain Birth-death process.
 - 2. In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the

service time distribution is also exponential with an average 36 minutes. Calculate the following:

- i. The mean queue size (line length), and
- ii. The probability that the queue size exceeds 10.
- iii. If the input of trains increases to an average 33 per day, what will be the change in (i) and (ii)?
- 3. At a railway station, only one train is handled at a time. The railway yard is sufficient only for two trains to wait while other is given signal to leave the station. Trains arrive at the station at an average rate of 6 per hour and the railway station can handle them on an average of 12 per hour. Assuming Poisson arrivals and exponential service distribution, find the steady-state probabilities for the various number of trains in the system. also find the average waiting time of a new train coming into the yard

Model Question Paper Course Code: 20MCA261 Course name: Operations Research

Max. Marks: 60 Duration: 3hrs

Part A Answer all questions, each carries 3 marks $(10 \times 3 = 30)$

- 1. Write down the basic structure of a linear programming problem in the mathematical form.
- 2. Define slack and surplus variables in LPP.
- 3. State the fundamental theorem of duality.
- 4. Write the dual of the following

Max
$$Z = x_1 - x_2 + 3x_3$$

subject to $x_1 + x_2 + x_3 \le 10$
 $2x_1 - x_3 \le 2$
 $2x_1 - 2x_2 + 3x_3 \le 6$

$$x_1, x_2, x_3 \ge 0$$

5. Obtain the IBFS using north west corner method

	D_1	D_2	D_3	D ₄	Supply
O ₁	2	4	3	6	20
O_2	7	3	8	2	10
O ₃	2	2	9	11	15
Demand	15	15	8	7	

- 6. Describe the Matrix Minima method.
- 7. What is queue discipline?
- 8. Explain single serve Poisson queuing model with infinite capacity.
- 9. Activities P, Q and R instantly follow activity M, and their current starting times are 12, 19 and 10. So, what is the latest finishing time for activity M?
- 10. What is the difference between PERT and CPM.

Part B Answer all questions, each carries 6 marks $(5 \times 6 = 30)$

11. Solve the following problem by Simplex method

$$\begin{aligned} Max \, Z &= 5x_1 + 3x_2 \\ subject \ to \ 4x_1 - x_2 &\leq 10 \\ 2x_1 + 2x_2 &\leq 50 \\ x_1, x_2 &\geq 0 \end{aligned}$$

12. Solve by Big-M method

$$Max Z = 6x_1 - 3x_2 + 2x_3$$

$$subject \ to \ 2x_1 + x_2 + x_3 \le 16$$

$$3x_1 + 2x_2 + x_3 \le 18$$

$$x_2 - 2x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0$$

13. Prove that the dual of a dual is the primal.

or

14. Solve the following by using the dual principle

$$Max Z = 40x_1 + 35x_2$$

 $subject \ to \ 2x_1 + 3x_2 \le 60$
 $4x_1 + 3x_2 \le 96$
 $x_1, x_2 \ge 0$

15. Solve the following Assignment problem

	I	JI	III	IV
A	2	3	4	5
В	4	5	6	7
С	7	8	9	8
D	3	5	8	9

01

16. Solve the following transportation problem

	D_1	D_2	D_3	D_4	Supply
O_1	5	2	4	3	22
O_2	4	5	1	6	15
O ₃	4	6	7	5	8
Demand	7	12	17	9	

17. Explain critical path analysis.

or

18. A project consists of eight activities with the following relevant information.

Activity	Immediate	Estimated duration (days)		
	predecessor	Optimistic	Most likely	Pessimistic
A		VER	\ <u>1</u>	7
В	71.41	Y	4	7
С		2	2	8
D	A	1	1	1
Е	В	2	5	14
F	С	2	5	8
G	D, E	3	6	15
Н	F, G	1	2	3

- (iv) Draw the PERT network and find out the expected project completion time.
- (v) What duration will have 95% confidence for project completion?
- (vi) If the average duration for activity F increases to 14 days, what will be its effects on the expected project completion time which will have 95% confidence?

(For standard normal Z = 1.645, area under the standard normal curve from 0 to Z is 0.45)

19. Explain birth-death process.

or

20. At a railway station, only one train is handled at a time. The railway yard is sufficient only for two trains to wait while other is given signal to leave the station. Trains arrive at the station at an average rate of 6 per hour and the railway station can handle them on an average of 12 per hour. Assuming Poisson arrivals and exponential service distribution, find the steady-state probabilities for the various number of trains in the system. also find the average waiting time of a new train coming into the yard.

Syllabus

Module 1: (9 Hours)

Linear programming problem- Slack and surplus variable- Standard form- Solution of Linear programming problem- Basic solution- Basic feasible solution- Degenerate- and Non-degenerate solutions- Optimal solution- Solution by simplex method- Artificial variables-Big- M method.

Module 2: (9 Hours)

Duality in Linear Programming Problem- Statement of duality theorem- Statement of complementary slackness theorem. The primal- Duality solutions using simplex method-Revised simplex method

Module 3: (9 Hours)

Transportation problem- Solution of Transportation problem- Finding an initial basic feasible solution- North West Corner method- Matrix minima method- Vogel's Approximation method- Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem. Assignment problem- Optimal solution- Hungarian method of assignment- Maximization in assignment problem.

Module 4: (9 Hours)

Network analysis- Project scheduling- Construction of project networks- Critical path method (CPM)- Identification of critical path using CPM- Estimation of Floats- Total float-Independent float- Project Evaluation and Review Technique (PERT) - Computation of expected completion times by PERT.

Module 5: (9 Hours)

Queuing theory- Elements of Queuing System- Kendall's notation- Operating characteristics-Poisson process- Exponential distribution- Mean and variance- Birth and Death process. Queuing models based on Poisson process- Single server models with finite and infinite capacity- Multi server model with finite and infinite capacity.

Note:

• Programming Assignments using Python and appropriate Case Studies may be given at the end of each module.

Esto.

• Linear Programming Problems in module 1 and module 2 and Transportation problems in module 3 can be solved using Python library PuLP. Using Numpy, PERT/CPM problems in module 4 can be solved.

Text Book

1. KantiSwarup, P.K. Gupta and Man Mohan, Operation Research, Sultan Chand (2010)

Reference Books

- 1. Hamdy A Taha, Operations Research- an introduction, Eighth Edition, Prentice Hall of India.
- 2. Ravindran, Philips and Solberg, Wiley, Operation Research, Second edition (2007)

Web References

- 1. https://pypi.org/project/PuLP/
- 2. https://numpy.org/

Course Contents and Lecture Schedule

Sl. No.	Торіс	
1	Module 1	9 Hours
1.1	Linear programming problem- Slack and surplus variable- Standard form	1
1.2	Solution of Linear programming problem- Basic solution- Basic feasible solution- Degenerate- and Non-degenerate solutions- Optimal solution	2
1.3	Solution by simplex method	3
1.4	Artificial variables- Big- M method	3
2	Module 2	9 Hours
2.1	Duality in Linear Programming Problem	1
2.2	Statement of duality theorem- Statement of complementary slackness theorem	2
2.3	The primal- Duality solutions using simplex method	3
2.4	Revised simplex method	3
3	Module 3	9 Hours
3.1	Transportation problem- Solution of Transportation problem- Finding an initial basic feasible solution- North West Corner method	2
3.2	Matrix minima method- Vogel's Approximation method	1
3.2	Matrix minima method- Vogel's Approximation method Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem	3
	Test for Optimality- Modi method- Unbalanced Transportation	_
3.3	Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem Assignment problem- Optimal solution- Hungarian method of	3
3.3	Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem Assignment problem- Optimal solution- Hungarian method of assignment- Maximization in assignment problem	3
3.3 3.4 4	Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem Assignment problem- Optimal solution- Hungarian method of assignment- Maximization in assignment problem Module 4 Network analysis- Project scheduling- Construction of project	3 3 9 Hours
3.3 3.4 4 4.1	Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem Assignment problem- Optimal solution- Hungarian method of assignment- Maximization in assignment problem Module 4 Network analysis- Project scheduling- Construction of project networks Critical path method (CPM)- Identification of critical path using	3 3 9 Hours
3.3 3.4 4 4.1 4.2	Test for Optimality- Modi method- Unbalanced Transportation problem- Maximisation in Transportation problem Assignment problem- Optimal solution- Hungarian method of assignment- Maximization in assignment problem Module 4 Network analysis- Project scheduling- Construction of project networks Critical path method (CPM)- Identification of critical path using CPM	3 3 9 Hours 1 2

5	Module 5	9 Hours
5 1	Queuing theory- Elements of Queuing System- Kendall's notation-	1
5.1	Operating characteristics- Poisson process	1
5.2	Exponential distribution- Mean and variance- Birth and Death	2
	process	2
5.3	Queuing models based on Poisson process	3
5.4	Single server models with finite and infinite capacity	1
5.5	Multi server model with finite and infinite capacity	2

