| CODE     | COURSE NAME                        | CATEGORY | L | Т | Р | CREDIT |
|----------|------------------------------------|----------|---|---|---|--------|
| 20MCA203 | DESIGN & ANALYSIS OF<br>ALGORITHMS | CORE     | 3 | 1 | 0 | 4      |

**Preamble:** The syllabus is prepared with a view to provide a strong foundation to students in design and analysis of computer algorithms and to introduce them the advanced topics such as Network Flows, Approximation algorithms and Randomised algorithms.

Prerequisite: Knowledge in Data Structures

Course Outcomes: After completion of the course the student will be able to

| CO No. | Course Outcome (CO)                                                                                       | Bloom's<br>Category Level |
|--------|-----------------------------------------------------------------------------------------------------------|---------------------------|
| CO 1   | Discuss the basic concepts in computer algorithms and their analysis & design using Divide and Conquer.   | Level 2:<br>Understand    |
| CO 2   | Explain the concepts of Greedy Strategy and Dynamic Programming to use it in solving real world problems. | Level 3:<br>Apply         |
| CO 3   | Explain the Branch & Bound technique, Backtracking technique and Lower bounds.                            | Level 2:<br>Understand    |
| CO 4   | Describe the fundamental concepts of Computational<br>Complexity and Network Flows.                       | Level 2:<br>Understand    |
| CO 5   | Discuss the concepts of Approximation and Randomised Algorithms.                                          | Level 2:<br>Understand    |

# Mapping of Course Outcomes with Program Outcomes

|      |             |    | -  | -  |    |    |    |    |    |    |    |    |
|------|-------------|----|----|----|----|----|----|----|----|----|----|----|
|      | <b>DO 1</b> | PO |
|      | PUT         | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| CO 1 | 3           | 3  | 1  | 2  |    |    | 2  |    |    |    |    |    |
| CO 2 | 3           | 3  | 1  | 2  |    |    | 2  |    |    |    |    |    |
| CO 3 | 3           | 3  | 1  | 2  |    |    | 2  |    |    |    |    |    |
| CO 4 | 3           | 3  | 1  | 2  |    |    | 2  |    |    |    |    |    |
| CO 5 | 3           | 3  | 1  | 2  |    |    | 2  |    |    |    |    |    |

3/2/1: High/Medium/Low

2014

# **Assessment Pattern**

| Bloom's<br>Category Levels | Conti<br>Asses<br>Te | nuous<br>sment<br>sts | End<br>Semester<br>Examination |  |  |
|----------------------------|----------------------|-----------------------|--------------------------------|--|--|
|                            | 1                    | 2                     |                                |  |  |
| Level 1: Remember          | 20                   | 20                    | 20                             |  |  |
| Level 2: Understand        | 20                   | 30                    | 30                             |  |  |
| Level 3: Apply             | 10                   |                       | 10                             |  |  |
| Level 4: Analyse           |                      |                       |                                |  |  |
| Level 5: Evaluate          |                      |                       |                                |  |  |
| Level 6: Create            |                      |                       |                                |  |  |

# Mark distribution

| Total<br>Marks | Continuous Internal<br>Evaluation (CIE) | inuous Internal<br>luation (CIE) Examination (ESE) |         |
|----------------|-----------------------------------------|----------------------------------------------------|---------|
| 100            | 40                                      | 60                                                 | 3 hours |
| 15             | UNIV                                    | EKSIT                                              | Y       |

| Continuous | Sinternal Evaluation Pattern: |            |
|------------|-------------------------------|------------|
| Attendance |                               | : 8 marks  |
| Continuous | Assessment Test (2 numbers)   | : 20 marks |
| Assignment | /Quiz/Course project          | : 12 marks |

**End Semester Examination Pattern:** There will be *two* parts; **Part A** and **Part B**. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer *all* questions. Part B contains 2 questions from each module of which student should answer *any one*. Each question can have a maximum 2 subdivisions and carry 6 marks.

# Sample Course Level Assessment Questions

Internal Evoluction

# Course Outcome 1 (CO 1):

- 1. Define "Time Complexity" of an algorithm?
- 2. What is the need for analysing an algorithm?
- 3. Define Big Oh Notation.
- 4. Define the terms Best Case, Worst Case and Average case complexities.
- 5. Explain the Merge Sort algorithm with an example.

# Course Outcome 2 (CO 2):

- 1. Explain the Greedy Control abstraction.
- 2. Write the Prim's algorithm and illustrate with an example.
- 3. State and illustrate the Principle of Optimal Substructure.
- 4. Explain a solution to the Travelling Salesman problem using Dynamic Programming.

:510.

# Course Outcome 3 (CO 3):

- 1. Explain the N-Queen's problem and its solution using Backtracking.
- 2. Explain the 8-puzzle problem and illustrate how it can be solved using Branch and Bound.
- 3. Bring out the notion of Decision Trees.
- 4. What is the lower bound of the time complexity of Comparison based sorting algorithms?

### **Course Outcome 4 (CO 4):**

- 1. Define class P and NP.
- 2. What is Polynomial Time Reduction?
- 3. Show that the Clique problem is NP-Complete.
- 4. Define the Terms Flow Network and Network Flow.
- 5. Explain the Ford-Fulkerson Algorithm.

### Course Outcome 5 (CO 5):

- 1. What is an Approximation algorithm?
- 2. Describe the 2-approximation algorithm for Vertex Cover problem.
- 3. What is a Randomised algorithm?
- 4. Explain the Schwartz-Zippel Lemma. How this Lemma can be used to test the identity of two polynomials.

# Model Question Paper Course Code: 20MCA203

# **Course Name: Design and Analysis of Algorithms**

Max. Marks :60

Duration: 3 Hrs

#### Part A

#### Answer all questions. Each question carries 3 marks (10 \* 3 = 30 Marks)

- 1. Define Big Oh notation.
- 2. Write the control abstraction for a typical Divide and Conquer algorithm.
- 3. Explain a Greedy strategy which can give the optimal solution for the Knapsack problem.
- 4. Write a dynamic programming algorithm to compute the factorial of a number.
- 5. How does Backtracking differ from Branch and Bound?
- 6. Using a decision tree, show that any search algorithm which searches a given key within an array of n elements must perform at least O(ln n) comparisons in the worst case.
- 7. What do you mean by the term Polynomial time reduction?
- 8. Define the term Network Flow and illustrate with an example.

- 9. What do you mean by approximation ratio of an Approximation algorithm?
- 10. What is meant by a Randomised Algorithm?

#### Part B

#### Answer all questions. Each question carries 6 marks. (5 \* 6 = 30 Marks)

- 11 Write the Linear Search Algorithm and analyse the best, worst and average case 6 complexities of the algorithm. OR 12 Explain the Merge Sort algorithm and give its worst-case analysis. 6 13 Write Kruskal's algorithm to compute the minimum cost spanning tree. 6 OR 14 Explain the dynamic programming algorithm for the Travelling Salesman problem. 6 15 Write the Backtracking algorithm for N-Queen Problem. 6 OR Explain the 8-puzzle problem and its solution using branch and bound technique. 16 6 17 Show that the Clique problem is NP-Complete. 6 OR Describe the Ford Fulkerson's procedure to compute the Max-Flow within a given 6 18 Flow Network. 19 Explain the 2-approximation algorithm for Vertex Cover and justify its 6 approximation ratio.
  - OR
- 20 Describe Randomised Quick sort.

6

MCA



### Syllabus

### Module 1: (8 Hours)

**Review of Algorithm Analysis**: Time and Space Complexity, Asymptotic Notations, Recurrence Equations, Solving Recurrence Equations- Substitution method and Iteration method.

Divide and Conquer: Control Abstraction, Merge Sort, Quick Sort, Matrix Multiplication.

# Module 2: (9 Hours)

**Greedy Strategy**: Control Abstraction, Knapsack Problem, Minimal Spanning Tree Algorithms- Prim's and Kruskal's Algorithm, Job Scheduling with deadlines

**Dynamic Programming**: Control Abstraction, Principle of Optimal Substructure, All Pairs shortest path problem, Travelling Salesman Problem, Bellman-Ford Algorithm

Module 3:(7 Hours)

Backtracking: Control Abstraction, N-Queens problem, Sum of Subsets Problem

Branch and Bound: Control Abstraction, 8- Puzzle problem

**Lower Bounds:** The Decision Tree method, Lower Bounds for Comparison based Sort and Searching (*Analysis not required*)

Module 4: (11 Hours)

**Complexity Theory**: Class P and NP, Polynomial time reductions, Class NP Hard and NP-Complete, Example Problems- Vertex Cover problem, Clique Problem.

**Network Flows**: Flow Networks and Network Flow, Max- Flow Min Cut Theorem, Ford Fulkerson method, Bipartite matching (*Analysis not required*)

Module 5: (10 Hours)

**Introduction to Approximation Algorithms**: Approximation Ratio, 2-approximation algorithm for Vertex Cover problem, Vertex Cover Approximation using Linear Programming and LP Rounding Algorithm.

**Introduction to Randomised Algorithms**: Review of Basic Probability, Schwartz-Zippel Lemma and Polynomial Identity Testing, Randomized Quick Sort (*Proof of Expected Worst Case Analysis not required*)

#### **Text Books**

- 1. Thomas H. Cormen, et al., "Introduction to Algorithms", Prentice Hall, 3rd Edition (2010)
- 2. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Orient Longman, Universities Press, 2nd Edition (2008)

# **Reference Books**

- 1. Richard Neapolitan, Kumarss Naimipour, "Foundations of Algorithms", Jones and Bartlett Publishers, Inc, 4th Edition (2011).
- 2. Sara Baase, Allen Van Gelder, "Computer Algorithms: Introduction to Design and Analysis", Pearson India, 3rd Edition (2002).
- 3. A. Levitin, "Introduction to the Design & Analysis of Algorithms", Pearson Education, 3rd Edition (2008).

# **Course Contents and Lecture Schedule**

| SI.<br>No. | Торіс                                                                       |         |  |  |  |
|------------|-----------------------------------------------------------------------------|---------|--|--|--|
| 1          | Review of Algorithm Analysis and Divide & Conquer                           | 8 Hours |  |  |  |
| 1.1        | Time and Space Complexity                                                   | 1       |  |  |  |
| 1.2        | Asymptotic Notations                                                        | 1       |  |  |  |
| 1.3        | Recurrence Equations, Solving Recurrence Equations- Substitution method     | 1       |  |  |  |
| 1.4        | Iteration method                                                            | 1       |  |  |  |
| 1.5        | Divide and Conquer: Control Abstraction, Merge Sort, Merge Sort<br>Analysis | 2       |  |  |  |
| 1.6        | Quick Sort, Quicksort analysis                                              | 1       |  |  |  |
| 1.7        | Matrix Multiplication                                                       | 1       |  |  |  |
| 2          | Greedy Strategy and Dynamic Programming                                     | 9 Hours |  |  |  |
| 2.1        | Greedy Strategy: Control Abstraction, Knapsack Problem                      | 1       |  |  |  |
| 2.2        | Minimum Cost Spanning Tree                                                  | 1       |  |  |  |
| 2.3        | Prim's algorithm                                                            | 1       |  |  |  |
| 2.4        | Kruskal's algorithm                                                         | 1       |  |  |  |
| 2.5        | Job Scheduling with deadlines                                               | 1       |  |  |  |
| 2.6        | Dynamic Programming: Control Abstraction, Principle of Optimal substructure | 1       |  |  |  |
| 2.7        | All Pairs shortest path problem                                             | 1       |  |  |  |
| 2.8        | Travelling Salesman Problem                                                 | 1       |  |  |  |
| 2.9        | Bellman-Ford Algorithm                                                      | 1       |  |  |  |

| 3   | Backtracking, Branch & Bound, Lower Bounds                                       | 7 Hours  |
|-----|----------------------------------------------------------------------------------|----------|
| 3.1 | Backtracking: Control Abstraction N- Queens problem                              | 1        |
| 3.2 | Sum of subsets problem                                                           | 1        |
| 3.3 | Branch and Bound: Control Abstraction 8- Puzzle problem                          | 1        |
| 3.4 | Lower Bounds: The Decision Tree method                                           | 2        |
| 3.5 | Lower Bounds for Comparison based Sorting                                        | 1        |
| 3.6 | Lower bounds for searching                                                       | 1        |
| 4   | Computational complexity, Network Flows                                          | 11 Hours |
| 4.1 | Class P, NP                                                                      | 1        |
| 4.2 | Polynomial Time Reductions                                                       | 1        |
| 4.3 | Class NP-Hard and NP-Complete                                                    | 2        |
| 4.4 | Vertex Cover Problem                                                             | 1        |
| 4.5 | Clique problem                                                                   | 1        |
| 4.6 | Flow Networks and Network Flows                                                  | 2        |
| 4.7 | Max Flow Min Cut Theorem                                                         | 1        |
| 4.8 | Ford Fulkerson's method                                                          | 1        |
| 4.9 | Bipartite matching                                                               | 1        |
| 5   | Approximation & Randomised Algorithms                                            | 10 Hours |
| 5.1 | Approximation algorithms- introduction, Approximation Ratio                      | 1        |
| 5.2 | 2- approximation algorithm for Vertex Cover problem                              | 1        |
| 5.3 | Vertex Cover Approximation using Linear Programming and LP<br>Rounding Algorithm | 2        |
| 5.4 | Randomized Algorithms: introduction, Review of Basic Probability                 | 1        |
| 5.5 | Review of Basic probability                                                      | 2        |
| 5.6 | Schwartz-Zippel Lemma and Polynomial Identity Testing                            | 2        |
| 5.7 | Randomized Quick Sort                                                            | 1        |
|     | 2014                                                                             |          |