
Part II

The Gory Details

105

Chapter 8

Distributed Database Patterns

The manager is to be blamed who distributes parts to his players which they are unable
to act.

—Franz Schubert

The speed of communications is wondrous to behold. It is also true that speed can multiply
the distribution of information that we know to be untrue.

—Edward R. Murrow

Administrators of web applications have traditionally had two choices when the application demand
exceeds database capacity: scaling up by increasing the power of individual servers, or scaling out by adding
more servers. For most of the relational database era, scaling up was the more practical option. Early
relational databases did not provide a clustering option, whereas the CPU and memory supplied by a single
server was constantly and exponentially increasing in line with Moore’s law. Consequently, scaling out was
neither practical nor necessary.

However, as database workloads shifted from client-server applications running behind the firewall
to web applications with potentially global scope, it became increasingly difficult to support workload
and availability requirements on a single server. Furthermore, Internet applications were often subject to
unpredictable and massive growth in workload: it became possible for an application to “go viral” and to
suddenly experience exponential growth in demand. The economic sweet spot for computer hardware
and the imperatives of growth increasingly encouraged clusters of servers rather than single, monolithic
proprietary servers. A scale-out solution for databases became imperative.

To address the demands of web-scale applications, a new generation of distributed nonrelational
databases emerged. In this chapter, we’ll dive deep into the architectures of these distributed database systems.

Distributed Relational Databases
The first database systems were designed to run on a single computer. Indeed, prior to the client-server
revolution, all components of early database applications—including all the application code—would reside
on a single system: the mainframe.

In this centralized model, all program code runs on the server, and users communicate with the
application code through dumb terminals (the terminals are “dumb” because they contain no application
code). In the client-server model, presentation and business logic were implemented on workstations—
usually Windows PCs—that communicated with a single back-end database server. In early Internet
applications, business logic was implemented on one or more web application servers, while presentation
logic was shared between the web browser and the application server, which still almost always
communicated with a single database server.

Chapter 8 ■ Distributed Database Patterns

106

Figure 8-1 Illustrates the three architectures, showing how each pattern continued to rely on a single,
monolithic database server.

Figure 8-1.  Mainframe, client-server, and early web architectures relied on single, monolithic database servers

Chapter 8 ■ Distributed Database Patterns

107

Replication
Database replication was initially adopted as a means of achieving high availability. Using replication,
database administrators could configure a standby database that could take over for the primary database in
the event of failure.

Database replication often took advantage of the transaction log that most relational databases used
to support ACID transactions. We introduced the transaction log pattern in the context of in-memory
databases in Chapter 7. When a transaction commits in an ACID-compliant database, the transaction record
is immediately written to the transaction log so that it is preserved in the event of failure. A replication
process monitoring the transaction log can apply changes to a backup database, thereby creating a replica.

Figure 8-2 illustrates the log-based replication approach. Database transactions are written in an
asynchronous “lazy” manner to the database files (1), but a database transaction immediately writes to
the transaction log upon commit (2). The replication process monitors the transaction log and applies
transactions as they are written to the read-only slave database (3). Replication is usually asynchronous, but
in some databases the commit can be deferred until the transaction has been replicated to the slave.

Figure 8-2.  Log-based replication

As we saw in Chapter 3, replication is typically a first step toward distributing the database load across
multiple servers. Using replication, the read workload can be distributed in a scale-out fashion, although
database transactions must still be applied to the master copy.

Shared Nothing and Shared Disk
The replication pattern for distributing database workloads works well to distribute read activity across
multiple servers, but it does not distribute transactional write loads, which still must be directed exclusively
to the master server.

Replication is also of limited value for distributing data warehousing workloads. An OLTP workload
typically consists of large numbers of short-duration requests. However, in a data warehousing environment,
the workload usually consists of smaller numbers of data-intensive queries. In high-end database servers,
these massive queries are executed by multiple processes or threads, each of which can leverage a separate
CPU core and take advantage of multiple IO channels.

http://dx.doi.org/10.1007/978-1-4842-1329-2_7
http://dx.doi.org/10.1007/978-1-4842-1329-2_3

Chapter 8 ■ Distributed Database Patterns

108

Parallelizing a query across multiple database servers requires a new approach. Data warehousing
vendors provided a solution to this problem by implementing a shared-nothing clustered database
architecture. Like so many concepts in the relational world, the shared-nothing idea was most notably
outlined by Michael Stonebraker in the 1980s. A database server may be classified as:

•	 Shared-everything: In this case, every database process shares the same memory,
CPU, and disk resources. Sharing memory implies that every process is on the same
server and hence this architecture is a single-node database architecture.

•	 Shared-disk: In this case, database processes may exist on separate nodes in the
cluster and have access to the CPU and memory of the server on which they reside.
However, every process has equal access to disk devices, which are shared across all
nodes of the cluster.

•	 Shared-nothing: In this case, each node in the cluster has access not only to its
own memory and CPU but also to dedicated disk devices and its own subset of
the database. We’ve seen several examples of shared-nothing architecture in this
book already, including the sharded MySQL design in Chapter 3 and the VoltDB
partitioning scheme in Chapter 7.

The shared-nothing model became the basis for several early clustered database systems, such as
Teradata. It provides an attractive model for data warehousing workloads because queries can easily be
parallelized across the multiple nodes based on the data they wish to access. For a system that wishes to
maximize read-centric workloads, it is significantly easier to implement. Databases implementing the
shared-nothing model often refer to themselves as massively parallel processing (MPP) databases. Figure 8-3
illustrates the shared-nothing model.

Figure 8-3.  Shared-nothing database architecture

http://dx.doi.org/10.1007/978-1-4842-1329-2_3
http://dx.doi.org/10.1007/978-1-4842-1329-2_7

Chapter 8 ■ Distributed Database Patterns

109

The shared-nothing architecture tends to break down in transactional scenarios, because of the need
to coordinate transactions that may touch data on multiple nodes. Since ACID transactions are “all or
nothing,” it’s necessary for all nodes in the transaction to coordinate closely on transaction execution. This
coordination, known as two-phase commit, is notoriously difficult to implement and may result in “in doubt”
transactional outcomes and poor transactional performance.

The other drawback of the shared-nothing architecture is that without careful partitioning, the cluster
workload becomes unbalanced. Maintaining correct partitioning becomes a major operational activity.
When nodes are added or removed from the cluster, expensive rebalancing is required.

A shared-disk architecture theoretically allows for greater and more elastic scalability, and it removes
the need for rebalancing operations. It also provides a more economical high-availability solution, since no
node has exclusive responsibility for any particular set of data. In shared-nothing, a node failure results in
a portion of the database being unavailable, while in shared-disk, the remaining nodes are able to take over
responsibility for the failed node.

The challenge for the shared-disk architecture is the need to coordinate cached data across nodes.
Without an in-memory cache, performance for all operations will degrade to disk speed. But to maintain a
consistent view of data across all nodes, each node needs to maintain a consistent cache. Maintaining this
cache coherency puts a strain on the network between the nodes and is difficult to successfully implement.

To date, the only surviving commercially successful shared-disk RDBMS is Oracle’s Real Application
Clusters (RAC) cluster database. RAC is the basis for Oracle’s Exadata database machine and cloud database
offerings. Figure 8-4 illustrates the shared-disk model.

Figure 8-4.  Shared-disk database architecture

Chapter 8 ■ Distributed Database Patterns

110

Nonrelational Distributed Databases
Maintaining ACID transactional integrity across multiple nodes in a distributed relational database is a
significant challenge. However, in nonrelational database systems, ACID compliance is often not provided.
For nonrelational distributed databases, the following considerations become more significant:

•	 Balancing availability and consistency: As we saw in Chapter 3, Brewer’s CAP
theorem argues that a distributed database that aims to scale beyond a single local
network must choose between availability and consistency in the event of a network
partition. An ACID-compliant database is obliged to favor consistency over all other
factors. However, a nonrelational database without the constraint of strict ACID
compliance can strike a different balance.

•	 Hardware economics: Even small differences in the cost of individual servers multiply
quickly when a system scales to thousands or hundreds of thousands of nodes.
Therefore, an economical database architecture will better leverage commodity
hardware so as to take advantage of the best price/performance ratios available.
Furthermore, it may become necessary to be able to cope with disparities between
server configurations, so that new hardware can be added to the database cluster
without requiring all existing nodes to be upgraded to the latest hardware specification.

•	 Resilience:In a massive database cluster, nodes will fail from time to time. In the
event of these failures, there can be no data loss, interruption to availability, or
maybe even failure at the transaction level.

There have been three broad categories of distributed database architecture adopted by next-generation
databases. The three models are:

•	 Variations on traditional sharding architecture, in which data is segmented across
nodes based on the value of a “shard key.”

•	 Variations on the Hadoop HDFS/HBase model, in which an “omniscient master”
determines where data should be located in the cluster, based on load and other factors

•	 The Amazon Dynamo consistent hashing model, in which data is distributed across
nodes of the cluster based on predictable mathematical hashing of a key value.

Replication may be inherent within each of these architectures in order to ensure that no data is lost in the
event of a server failure, although the replication strategies vary. We look at examples of each of these approaches
in the remainder of this chapter. We use MongoDB as an example of a sharding architecture, HBase as the
example of an omniscient master, and Cassandra as an example of Dynamo-style consistent hashing.

MongoDB Sharding and Replication
MongoDB supports sharding to provide scale-out capabilities and replication for high availability. Although
each can be implemented independently of the other, they are usually both present in a production scenario.

Sharding
A high-level representation of the MongoDB sharding architecture is shown in Figure 8-5. Each shard is
implemented by a distinct MongoDB database, which in most respects is unaware of its role in the broader
sharded server (1). A separate MongoDB database—the config server (2)—contains the metadata that can
be used to determine how data is distributed across shards. A router process (3) is responsible for routing
requests to the appropriate shard server.

http://dx.doi.org/10.1007/978-1-4842-1329-2_3

Chapter 8 ■ Distributed Database Patterns

111

You may recall that in MongoDB, a collection is used to store multiple JSON documents that usually
have some common attributes. To shard a collection, we choose a shard key, which is one or more indexed
attributes that will be used to determine the distribution of documents across shards. The B-tree structure of
the MongoDB index contains the information necessary to distribute keys evenly across shards.

Sharding Mechanisms
Distribution of data across shards can be either range based or hash based. In range-based partitioning,
each shard is allocated a specific range of shard key values. MongoDB consults the distribution of key values
in the index to ensure that each shard is allocated approximately the same number of keys. In hash-based
sharding, the keys are distributed based on a hash function applied to the shard key.

There are advantages and compromises involved in each scheme. Figure 8-6 illustrates the performance
trade-offs inherent in range and hash sharding for inserts and range queries.

Figure 8-5.  MongoDB sharding architecture

Chapter 8 ■ Distributed Database Patterns

112

Figure 8-6.  Comparison of range and hash sharding in MongoDB

Chapter 8 ■ Distributed Database Patterns

113

Range-based partitioning allows for more efficient execution of queries that process ranges of values,
since these queries can often be resolved by accessing a single shard. Hash-based sharding requires that
range queries be resolved by accessing all shards. On the other hand, hash-based sharding is more likely
to distribute “hot” documents (unfilled orders or recent posts, for instance) evenly across the cluster, thus
balancing the load more effectively.

However, when range partitioning is enabled and the shard key is continuously incrementing, the load
tends to aggregate against only one of the shards, thus unbalancing the cluster. With hash-based partitioning
new documents are distributed evenly across all members of the cluster. Furthermore, although MongoDB
tries to distribute shard keys evenly across the cluster, it may be that there are hotspots within particular
shard key ranges which again unbalance the load. Hash-based sharding is more likely to evenly distribute
the load in this scenario.

Tag-aware sharding allows the MongoDB administrator to fine-tune the distribution of documents to
shards. By associating a shard with the tag, and associating a range of keys within a collection with the same
tag, the administrator can explicitly determine the shard on which these documents will reside. This can be
used to archive data to shards on cheaper, slower storage or to direct particular data to a specific data center
or geography.

Cluster Balancing
When hash-based sharding is implemented, the number of documents in each shard tends to remain
balanced in most scenarios. However, in a range-based sharding scenario, it is easy for the shards to
become unbalanced, especially if the shard key is based on a continuously increasing value, such as an
auto-incrementing primary key ID.

For this reason, MongoDB will periodically assess the balance of shards across the cluster and perform
rebalance operations, if needed. The unit of rebalance is the shard chunk. Shards consist of chunks—typically
64MB in size—that contain contiguous values of shard keys (or of hashed shard keys). If a shard is added or
removed from the cluster, or if the balancer determines that a shard has become unbalanced, it can move
chunks from one shard to another. The chunks themselves will be split if they grow too large.

Replication
Sharding is almost always combined with replication so as to ensure both availability and scalability in a
production MongoDB deployment.

In MongoDB, data can be replicated across machines by the means of replica sets. A replica set consists
of a primary node together with two or more secondary nodes. The primary node accepts all write requests,
which are propagated asynchronously to the secondary nodes.

The primary node is determined by an election involving all available nodes. To be eligible to become
primary, a node must be able to contact more than half of the replica set. This ensures that if a network
partitions a replica set in two, only one of the partitions will attempt to establish a primary.

The successful primary will be elected based on the number of nodes to which it is in contact, together
with a priority value that may be assigned by the system administrator. Setting a priority of 0 to an instance
prevents it from ever being elected as primary. In the event of a tie, the server with the most recent optime—
the timestamp of the last operation—will be selected.

The primary stores information about document changes in a collection within its local database, called
the oplog. The primary will continuously attempt to apply these changes to secondary instances.

Members within a replica set communicate frequently via heartbeat messages. If a primary finds it
is unable to receive heartbeat messages from more than half of the secondaries, then it will renounce its
primary status and a new election will be called. Figure 8-7 illustrates a three-member replica set and shows
how a network partition leads to a change of primary.

Chapter 8 ■ Distributed Database Patterns

114

Figure 8-7.  MongoDB replica set and primary failover

Arbiters are special servers that can vote in the primary election, but that don’t hold data. For large
databases, these arbiters can avoid the necessity of creating otherwise unnecessary extra servers to ensure
that a quorum is available when electing a primary.

Chapter 8 ■ Distributed Database Patterns

115

Write Concern and Read Preference
A MongoDB application has some control over the behavior of read and write operations, providing a degree
of tunable consistency and availability.

•	 The write concern setting determines when MongoDB regards a write operation
as having completed. By default, write operations complete once the primary has
received the modification. This means that if the primary should fail irrecoverably,
then data might be lost. To ensure that write operations have been propagated
beyond the primary, the client can issue a blocking call, which will wait until the
write has been received by all secondaries, a majority of secondaries, or a specified
number of secondaries.

•	 The read preference determines where the client sends read requests. By default,
all read requests are sent to the primary. However, the client driver can request
that read requests be routed to the secondary if the primary is unavailable, or to
secondaries, or to whichever server is “nearest.” The latter setting is intended to favor
low latency over consistency.

The default settings for read preference and write concern result in MongoDB behaving as a strictly
consistent system: everybody will see the same version of a document. Allowing reads to be satisfied from a
secondary node results in a more eventually consistent behavior, unless the write concern is configured to
block writes until they reach secondary nodes.

We’ll look more at MongoDB consistency in the next chapter.

HBase
HBase can be thought of both as the “Hadoop database” and as “open-source BigTable.” That is, we can
describe HBase as a mechanism for providing random access database services on top of the Hadoop HDFS
file system, or we can think of HBase as an open-source implementation of Google’s BigTable database that
happens to use HDFS for data storage. Both of these descriptions are accurate: although HBase theoretically
can be implemented on top of any distributed file system—or, indeed, even a nondistributed file system—
it’s almost always implemented on top of Hadoop HDFS, and many of HBase’s architectural assumptions
reflect this. On the other hand, HBase implements real-time random access database functionality, which is
essentially distinct from the base capabilities of Hadoop.

In the discussion that follows, we are going to concentrate on the HBase architecture as it is most
commonly encountered: as implemented on top of HDFS. The implementation of HBase over HDFS creates
a sort of hybrid, a mix of shared-nothing and shared-disk clustering patterns. On the one hand, every HBase
node can access any element of data in the database because all data is accessible via HDFS. On the other
hand, it is typical to co-locate HBase servers with HDFS DataNodes, which means that in practice each node
tends to be responsible for an exclusive subset of data stored on local disk.

In either case, HDFS provides the reliability guarantees for data on disk: the HBase architecture is
not required to concern itself with write mirroring or disk failure management, because these are handled
automatically by the underlying HDFS system.

We introduced HDFS and Hadoop architecture in Chapter 2; please refer to that chapter if you need a
refresher. HDFS implements a distributed file system using disks that are directly attached to the servers—
DataNodes—that constitute a Hadoop cluster. HDFS automatically manages redundancy of data: by default,
data is replicated across three DataNodes, one of which (if possible) is located on a separate server rack.

http://dx.doi.org/10.1007/978-1-4842-1329-2_2

Chapter 8 ■ Distributed Database Patterns

116

Tables, Regions, and RegionServers
HBase implements a wide column store based on Google’s BigTable specification. We touched on that data
model in Chapter 2, and we’ll talk more about it in Chapter 10. For now, we can consider HBase tables
as potentially massive tabular datasets that are implemented on disk by a variable number of HDFS files
called Hfiles.

All rows in an HBase table are identified by a unique row key. A table of nontrivial size will be split into
multiple horizontal partitions called regions. Each region consists of a contiguous, sorted range of key values.
This resembles the MongoDB range-based sharding scheme we described earlier in this chapter.

Read or write access to a region is controlled by a RegionServer. Each RegionServer normally runs on a
dedicated host, and is typically co-located with the Hadoop DataNode.

There will usually be more than one region in each RegionServer. As regions grow, they split into
multiple regions based on configurable policies. Regions may also be split manually. We’ll discuss this more
a little later in this chapter.

Each HBase installation will include a Hadoop Zookeeper service that is implemented across
multiple nodes. Hbase may share this Zookeeper ensemble with the rest of the Hadoop cluster or use a
dedicated service.

When an HBase client wishes to read or write to a specific key value, it will ask Zookeeper for the
address of the RegionServer that controls the HBase catalog. This catalog consists of the tables -ROOT- and
.META., which identify the RegionServers that are responsible for specific key ranges. The client will then
establish a connection with that RegionServer and request to read or write the key value concerned.

The HBase master server performs a variety of housekeeping tasks. In particular, it controls the
balancing of regions among RegionServers. If a RegionServer is added or removed, the master will organize
for its regions to be relocated to other RegionServers.

Figure 8-8 illustrates some of these architectural elements. An HBase client consults Zookeeper to
determine the location of the HBase catalog tables (1), which can be then be interrogated to determine the
location of the appropriate RegionServer (2). The client will then request to read or modify a key value from
the appropriate RegionServer (3). The RegionServer reads or writes to the appropriate disk files, which are
located on HDFS (4).

http://dx.doi.org/10.1007/978-1-4842-1329-2_2
http://dx.doi.org/10.1007/978-1-4842-1329-2_10

Chapter 8 ■ Distributed Database Patterns

117

Caching and Data Locality
The RegionServer includes a block cache that can satisfy many reads from memory, and a MemStore,
which writes in memory before being flushed to disk. However, to ensure durability of the writes, each
RegionServer has a dedicated write ahead log (WAL), which journals all writes to HDFS. This architecture is
an implementation of the log-structured merge tree (LSM) pattern that is more fully described in Chapter 10.

The RegionServer can act as a generic HDFS client, communicating with the HDFS NameNode to perform
read and write operations to files. In the most typical production deployment scenario, each RegionServer is
located on a Hadoop NameNode, and as a result, region data will be co-located with the RegionServer, providing
good data locality. This data locality will be disrupted by rebalance operations and RegionServer failovers,
but compactions—which merge HDFS disk files as described in Chapter 10—will restore
data locality.

Hadoop and HBase support a mode known as short-circuit reads, in which the RegionServer can read
directly from local disk, bypassing the NameNode. This, of course, is only possible when the data is stored on
a DataNode that also hosts the RegionServer.

Figure 8-8.  HBase architecture

http://dx.doi.org/10.1007/978-1-4842-1329-2_10
http://dx.doi.org/10.1007/978-1-4842-1329-2_10

Chapter 8 ■ Distributed Database Patterns

118

The three levels of data locality are shown in Figure 8-9. In the first configuration, the RegionServer and
the DataNode are located on different servers and all reads and writes have to pass across the network. In
the second configuration, the RegionServer and the DataNode are co-located and all reads and writes pass
through the DataNode, but they are satisfied by the local disk. In the third scenario, short-circuit reads are
configured and the RegionServer can read directly from the local disk.

Figure 8-9.  Data locality in HBase

Rowkey Ordering
The HBase region partitioning scheme requires that regions consist of contiguous ranges of rowkeys. This
range-based partitioning has a significant impact on performance when the rowkey contains some form
of monotonically incrementing value, such as a timestamp or a incrementing counter. In this event, all
write operations will be directed to a specific region and hence to a single RegionServer. This can create a
bottleneck on write throughput.

HBase offers no internal mechanisms to mitigate this issue. It’s up to the application designer to
construct a key that is either randomized—a hash of the timestamp, for instance—or is prefixed in some way
with a more balanced attribute. In the HBase time series database OpenTSDB, the timestamp is prefixed by
a metric identifier variable that has a large number of values. Data for a single metric will be located in a
specific RegionServer, but data for a specific timestamp will be distributed across all the RegionServers.

Chapter 8 ■ Distributed Database Patterns

119

RegionServer Splits, Balancing, and Failure
As regions grow, they will be split by the RegionServer as required. The new regions will remain controlled
by the original RegionServer—at least initially—but they are eligible for relocation during load-balancing
operations. The default region-split policy results in regions of incrementally greater size, with the first split
occurring after as little as 128M, while the tenth region will be approximately 10GB in size. However, it is
possible to split regions manually or to override the split policy with custom code.

One of the most important responsibilities of the HBase master node is to balance regions across
RegionServers. The master will periodically evaluate the balance of regions across all RegionServers, and
should it detect an imbalance, it will migrate regions to another server. This is a “soft” rebalance—the
region’s data remains in its original location on HDFS disk, but the responsibility for managing that data is
moved to a different RegionServer.

As noted earlier, rebalancing tends to result in a loss of data locality: when the RegionServer acquires
responsibility for a new region, that region will probably be located on a remote data node—at least until the
next major compaction.

Region Replicas
In earlier versions of HBase, a failure of a RegionServer would require a failover to a new RegionServer.
Because the RegionServers don’t actually store the data for a region (the data is in HDFS), a failure is not
catastrophic. The master would detect the failure and allocate the regions concerned to other RegionServers
in a similar way to the balancing operation. However, some interruption of service would result.

Region replicas allow for redundant copies of regions to be stored on multiple RegionServers. Should a
RegionServer fail, these replicas can be used to service client requests.

The original RegionServer serves as the master copy of the region. Read-only replicas of the region are
distributed to other RegionServers—located in other racks, if possible—which then “follow” the primary
RegionServer. Writes to these replicas are asynchronous to primary RegionServer writes, so data in the
replicas will not always be up to date. We’ll see in the next chapter how the configuration of HBase region
replicas affects consistency and availability.

HBase also supports a replication facility that can be used to stand up a duplicated HBase database.
This is typically used to duplicate an entire HBase database in another data center.

Cassandra
In Chapter 3, we introduced Amazon’s Dynamo database and the concept of consistent hashing. A number
of open-source systems have implemented the Dynamo model. In this chapter, we consider the Cassandra
implementation.

Gossip
In HBase and MongoDB, we encountered the concept of master nodes—nodes which have a specialized
supervisory function, coordinate activities of other nodes, and record the current state of the database
cluster. In Cassandra and other Dynamo databases, there are no specialized master nodes. Every node is
equal and every node is capable of performing any of the activities required for cluster operation.

Nodes in Cassandra do, however, have short-term specialized responsibilities. For instance, when a
client performs an operation, a node will be allocated as the coordinator for that operation. When a new
member is added to the cluster, a node will be nominated as the seed node from which the new node will
seek information. However, these short-term responsibilities can be performed by any node in the cluster.

http://dx.doi.org/10.1007/978-1-4842-1329-2_3

Chapter 8 ■ Distributed Database Patterns

120

One of the advantages of a master node is that it can maintain a canonical version of cluster
configuration and state. In the absence of such a master node, Cassandra requires that all members of the
cluster be kept up to date with the current state of cluster configuration and status. This is achieved by use
of the gossip protocol. Every second each member of the cluster will transmit information about its state and
the state of any other nodes it is aware of to up to three other nodes in the cluster. In this way, cluster status is
constantly being updated across all members of the cluster.

The gossip protocol is aptly named: when people gossip, they generally tend to gossip about other
people! Likewise, in Cassandra, the nodes gossip about other nodes as well as about their own state.

Cluster configuration is persisted in the system keyspace, which is available to all members of the
cluster. A keyspace is roughly analogous to a schema in a relational database—the system keyspace contains
tables that record metadata about the cluster configuration.

This architecture eliminates any single point of failure within the cluster. Although distributed
databases with master nodes have strategies to allow for rapid failover, the crash of a master node usually
creates a temporary reduction in availability, such as momentarily falling back to read-only mode.

One of the main topics of gossip within a Cassandra cluster is node availability. The traditional
mechanism for detecting node failure is to send heartbeats between nodes. However, in a widely distributed
system, the heartbeats may be lost because of network issues rather than actual node failure. For this reason,
Cassandra failure detection is more probabilistic: if you like, nodes in the cluster become increasingly
“worried” about other nodes. If it seems likely that a node is down, then the operations will be directed to
“known good” nodes.

Consistent Hashing
Cassandra and other dynamo-based databases distribute data throughout the cluster by using consistent
hashing. The rowkey (analogous to a primary key in an RDBMS) is hashed. Each node is allocated a range of
hash values, and the node that has the specific range for a hashed key value takes responsibility for the initial
placement of that data.

In the default Cassandra partitioning scheme, the hash values range from -263 to 263-1. Therefore, if there
were four nodes in the cluster and we wanted to assign equal numbers of hashes to each node, then the hash
ranges for each would be approximately as follows:

Node Low Hash High Hash

Node A -263 -263/2

Node B -263/2 0

Node C 0 263/2

Node D 263/2 263

We usually visualize the cluster as a ring: the circumference of the ring represents all the possible hash
values, and the location of the node on the ring represents its area of responsibility. Figure 8-10 illustrates
simple consistent hashing: the value for a rowkey is hashed, which determines its position on “the ring.”
Nodes in the cluster take responsibility for ranges of values within the ring, and therefore take ownership of
specific rowkey values.

Chapter 8 ■ Distributed Database Patterns

121

Figure 8-10.  Consistent hashing

The four-node cluster in Figure 8-10 is well balanced because every node is responsible for hash ranges
of similar magnitude. But we risk unbalancing the cluster as we add nodes. If we double the number of
nodes in the cluster, then we can assign the new nodes at points on the ring between existing nodes and the
cluster will remain balanced. However, doubling the cluster is usually impractical: it’s more economical to
grow the cluster incrementally.

Early versions of Cassandra had two options when adding a new node. We could either remap all
the hash ranges, or we could map the new node within an existing range. In the first option we obtain a
balanced cluster, but only after an expensive rebalancing process. In the second option the cluster becomes
unbalanced; since each node is responsible for the region of the ring between itself and its predecessor,
adding a new node without changing the ranges of other nodes essentially splits a region in half. Figure 8-11
shows how adding a node to the cluster can unbalance the distribution of hash key ranges.

Chapter 8 ■ Distributed Database Patterns

122

Virtual nodes, implemented in Cassandra, Riak, and many other Dynamo-based systems, provide a
solution to this issue. When using virtual nodes, the hash ranges are calculated for a relatively large number
of virtual nodes—256 virtual nodes per physical node, typically—and these virtual nodes are assigned
to physical nodes. Now when a new node is added, specific virtual nodes can be reallocated to the new
node, resulting in a balanced configuration with minimal overhead. Figure 8-12 illustrates the relationship
between virtual nodes and physical nodes.

Figure 8-11.  Adding a node to a Cassandra cluster (without virtual nodes)

Chapter 8 ■ Distributed Database Patterns

123

Virtual nodes have some other advantages. For instance, it is easier to balance a cluster made up of
heterogeneous systems, since you can allocate more virtual nodes to more powerful new machines and
fewer virtual nodes to underpowered older machines. Also, if a node dies it can be reconstituted from a
larger number of physical machines, thus sharing the overhead of recovery more equitably across the cluster.

Figure 8-12.  Using virtual nodes to partition data among physical nodes

Chapter 8 ■ Distributed Database Patterns

124

Order-Preserving Partitioning
The Cassandra partitioner determines how keys are distributed across nodes. The default partitioner
uses consistent hashing, as described in the previous section. Cassandra also supports order-preserving
partitioners that distribute data across the nodes of the cluster as ranges of actual (e.g., not hashed) rowkeys.
This has the advantage of isolating requests for specific row ranges to specific machines, but it can lead to an
unbalanced cluster and may create hotspots, especially if the key value is incrementing. For instance, if the
key value is a timestamp and the order-preserving partitioner is implemented, then all new rows will tend to
be created on a single node of the cluster.

In early versions of Cassandra, the order-preserving petitioner might be warranted to optimize range
queries that could not be satisfied in any other way; however, following the introduction of secondary
indexes, the order-preserving petitioner is maintained primarily for backward compatibility, and Cassandra
documentation recommends against its use in new applications.

Replicas
So far, we have seen how Cassandra allocates the initial copy of a data item to a node. The consistent hashing
algorithm also determines where replicas of data items are stored.

The node responsible for the hash range that equates to a specific rowkey value is called the coordinator
node. The coordinator is responsible for ensuring that the required number of replica copies of the data are
also written. The number of nodes to which the data must be written is known as the replication factor, and
is the “N” in the NWR notation that we first encountered in Chapter 3.

By default, the coordinator will write copies of the data to the next N-1 nodes on the ring. So if the
replication factor is 3, the coordinator will send replicas of the data item to the next two nodes on the ring. In
this scenario, each node will be replicating data from the previous two nodes on the ring and replicating to
the next two nodes on the ring. This simple scheme is referred to as the simple replication strategy.

Cassandra also allows you to configure a more complex and highly available scheme. The Network
Topology Aware replication strategy ensures that copies will be written to nodes on other server racks within
the same data center, or optionally to nodes in another data center altogether. Figure 8-13 illustrates these
two replication strategies.

http://dx.doi.org/10.1007/978-1-4842-1329-2_3

Chapter 8 ■ Distributed Database Patterns

125

Figure 8-13.  Replication strategies in Cassandra

Chapter 8 ■ Distributed Database Patterns

126

Snitches
Cassandra uses snitches to help optimize read and write operations. A variety of snitches may be configured.

•	 The simpleSnitch returns only a list of nodes on the ring. This is sufficient for the
simple replication strategy we discussed in the previous section.

•	 The RackInferringSnitch uses the IP addresses of hosts to infer their rack and data
center location. This snitch supports the network aware replication strategy.

•	 The PropertyFileSnitch uses data in the configuration file rather than IP addresses
to determine the data center and rack topology.

In addition, all snitches monitor the read latency for requests and use this to build a statistical model
that can route requests to the best-performing nodes.

Specialized snitches exist that understand the networked topology inside various cloud platforms, such
as Amazon EC2.

Summary
In this chapter we’ve reviewed distributed database patterns for traditional relational databases and for
several nonrelational systems. Relational database architecture was developed in an era of large, monolithic
database servers, and most relational databases still run as a single instance. However, shared-nothing
clustering is commonplace in massively parallel data warehouses, and Oracle has a commercially successful
shared-disk clustered RDBMS.

We looked in detail at three distributed nonrelational database systems. MongoDB uses a combination
of sharding and replication to enable distributed processing. HBase leverages the distributed file system of
the Hadoop Distributed File System together with a range-partitioning strategy to achieve a highly scalable
solution. Cassandra uses the consistent hashing scheme pioneered in Amazon’s Dynamo system to create a
symmetrical clustering solution in which no master servers are required.

In a distributed database, multiple copies of data are typically maintained across the cluster. In the next
chapter, we’ll see how these databases manage data consistency within such a distributed system.

39

Chapter 3

Sharding, Amazon, and the Birth
of NoSQL

Step 1 - Shard database. Step 2 - shoot yourself.

—Twitter user @Dmitriy, 2009

“Bob: So, how do I query the database?

IT guy: It’s not a database. It’s a Key-Value store. . . .

You write a distributed map-reduce function in Erlang.

Bob: Did you just tell me to go **** myself?

IT guy: I believe I did, Bob.”

—Fault Tolerance cartoon, @jrecursive, 2009

The last time we saw a major new brand of relational database was around 1995, with the first release of
MySQL. In 1995, the World Wide Web in the United States was barely two years old—the Netscape browser
had been released only the year before. In terms of computer systems, it was a different era.

In the 10 years between 1995 and 2005, the Internet was transformed from a dial-up curiosity to
arguably the most important communication system in our civilization, a foundation for international
commerce, and soon to be a centerpiece of our social lives. Despite that, the database systems used in 2005
had the same names as those used in 1995. Surveying the software landscape in 2005, you would be excused
for thinking that there was nothing new under the database sun.

Behind the scenes, however, the ability of the relational database to sustain the needs of web
applications had been stretched to the breaking point. Out of this pressure arose a new breed of web-scale
transactional database systems—what we now call NoSQL.

Scaling Web 2.0
The World Wide Web was initially conceived and implemented as a global collection of linked static
documents. Indeed, the vast majority of the web still consists of read-only static content. Google developed
many of the technologies introduced in the last chapter to provide an index and search capability across
these documents.

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

40

But to retailers and other businesses, the web promised to deliver much more than simply a place
to store online catalogs and white papers. The idea of web-based retail outlets promised to revolutionize
modern commerce. And although this concept of e-commerce resulted in the biggest boom and bust of our
generation, the promise was eventually realized and today you can purchase virtually anything online.

The World Wide Web of static pages is often referred to as Web 1.0, and the World Wide Web of
dynamically created content with transactional capability is referred to as Web 2.0. However, version 2.0
was not the result of a controlled architectural redevelopment; rather, it resulted from web developers
scrambling to cope with ever-increasing demands for functionality, performance, and scale.

How Web 2.0 was Won
The first web servers provided accessed to hyperlink documents written in HTML. There were no database
systems involved, and there was no ability to conduct business or any transactional activity.

Early websites that wanted to provide some form of user interaction—Amazon.com, for
instance—used the Common Gateway Interface (CGI). CGI allowed an HTTP request to invoke a script
rather than display a HTML page. Early dynamic webpages would then invoke scripts written in the Perl
language, which would connect to a database and generate HTML code on the fly based on database
contents. In this way, a website could display a catalog based on data held within a database or could
personalize a page based on a user’s profile.

CGI-based approaches gave way to more elegant and cohesive frameworks such as Java J2EE and
ASP.NET, though huge numbers of websites based on the PHP language still follow the CGI model. However,
regardless of the framework employed, the common pattern entailed a web application server displaying
information dynamically generated from database content.

It’s easy to scale up the web layer in this architecture. Just as there can be many clients for every
database in the client/server architecture, there can be as many web servers as you like communicating
with a single back-end database. So a bottleneck in the web server layer can be fixed simply by adding more
web servers.

However, fixing bottlenecks at the database layer was not so simple. While there were a few database
clustering solutions available at the beginning of the twenty-first century, it was generally difficult to achieve
linear scalability with these solutions, and none had ever demonstrated scalability at the level required by
the larger e-commerce sites.

During the early stages of Web 2.0, the solution to database performance was simply to buy a more
powerful database server. Database servers were getting more capable every year, and storage servers could
provide databases with massive IO capacity. So during the initial Internet bubble, companies like EMC and
Oracle did very well, because it made sense for these early Web 2.0 companies to buy the most powerful
database possible and thereby sustain the absurdly optimistic growth curves they expected.

Two factors led to the abandonment of this scale-up solution. First, the dot.com crash brought financial
reality back into the equation, and the surviving web companies needed financially prudent solutions.
Businesses wanted a solution that could start small and grow as required. Second, as Web 2.0 companies
reached global scale, they found that even the most massive centralized database server could not meet their
needs. Scaling up had run out of steam.

Furthermore, even if the scale-up solution had delivered the capacity required, it still represented a
potential single point of failure, and it could not provide equitable response time across a global market.

The Open-source Solution
Following the dot.com crash, open-source software became increasingly valued within Web 2.0 operations.
Linux supplanted proprietary UNIX as the operating system of choice, and the Apache web server became
dominant. During this period, MySQL overtook Oracle as the Database Management System (DBMS) of
choice for website development.

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

41

MySQL was then and is still now far less scalable than Oracle; it generally runs on less powerful
hardware and is less able to take advantage of multicore processors. However, Web developers came up with
a couple of tricks to get MySQL to go further.

First, they used a technology called Memcached to avoid database access as much is possible.
Memcached is an open-source utility that provides a distributed object cache. Object-oriented languages
could cache an object-oriented representation of database information across many servers. By reading
from these servers rather than the database, the load on the database could be reduced.

Second, web developers took advantage of MySQL replication. Replication allows changes to one
database to be copied to another database. Read requests could be directed to any one of these replica
databases. Write operations still had to go to the master database however, because master-to-master
replication was not possible. However, in a typical database application—and particularly in web
applications—reads significantly outnumber writes, so the read replication strategy makes sense.

Figure 3-1 illustrates the transition from single web server and database server to multiple web servers,
Memcached servers, and read-only database replicas.

Figure 3-1.  Scaling up with Memcached servers and replication

Memcached and read replication increase the overall capacity of MySQL-based web applications
dramatically. However, both these techniques can only increase the read capability of the system. When the
system reaches a bottleneck on database write activity, a more dramatic solution is required.

Sharding
Sharding allows a logical database to be partitioned across multiple physical servers.

In a sharded application, the largest tables are partitioned across multiple database servers. Each
partition is referred to as a shard. This partitioning is based on a Key Value, such as a user ID. When
operating on a particular record, the application must determine which shard will contain the data and then

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

42

send the SQL to the appropriate server. Sharding is a solution used at the largest websites; Facebook and
Twitter are the most well-known examples. At both of these websites, data that is specific to an individual
user is concentrated in MySQL tables on a specific node.

Figure 3-2 illustrates the Memcached and replication configuration shown earlier in this chapter with
sharding added. In this example, there are three shards, and for simplicity’s sake, the shards are labeled by
first letter of the primary key. As a result, we might imagine that rows with the key GUY are in shard 2, while
key BOB would be allocated to shard 1. In practice, it is more likely that the primary key would be hashed to
ensure even distribution of keys to servers.

Figure 3-2.  Memcached/replication architecture from Figure 3-1, with sharding added

The exact number of servers being used at Facebook is constantly changing and not always publicly
disclosed, but in around 2011 they did reveal that they were using more than 4,000 shards of MySQL and
9,000 Memcached servers in their configuration. This sharded MySQL configuration supported 1.4 billion
peak reads per second, 3.5 million row changes per second, and 8.1 million physical IOs per second. As
we will see, sharding involves significant operational complexities and compromises, but it is a proven
technique for achieving data processing on a massive scale.

Sharding is simple in concept but incredibly complex in practice. The application must contain logic
that understands the location of any particular piece of data and the logic to route requests to the correct
shard. Sharding is usually associated with rapid growth, so this routing needs to be dynamic. Requests that
can only be satisfied by accessing more than one shard thus need complex coding as well, whereas on a
nonsharded database a single SQL statement might suffice.

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

43

Death by a Thousand Shards
Sharding—together with caching and replication—is arguably the only way to scale a relational database to
massive web use. However, the operational costs of sharding are huge. Among the drawbacks of a sharding
strategy are:

•	 Application complexity. It’s up to the application code to route SQL requests to the
correct shard. In a statically sharded database, this would be hard enough; however,
most massive websites are adding shards as they grow, which means that a dynamic
routing layer must be implemented. This layer is often in addition to complex code
being required to maintain Memcached object copies and to differentiate between
the master database and read-only replicas.

•	 Crippled SQL. In a sharded database, it is not possible to issue a SQL statement that
operates across shards. This usually means that SQL statements are limited to row-
level access. Joins across shards cannot be implemented, nor can aggregate GROUP
BY operations. This means, in effect, that only programmers can query the database
as a whole.

•	 Loss of transactional integrity. ACID transactions against multiple shards are not
possible—or at least not practical. It is possible in theory to implement transactions
across databases in some database systems—those supporting Two Phase Commit
(2PC)—but in practice this creates problems for conflict resolution, can create
bottlenecks, has issues for MySQL, and is rarely implemented.

•	 Operational complexity. Load balancing across shards becomes extremely
problematic. Adding new shards requires a complex rebalancing of data. Changing
the database schema also requires a rolling operation across all the shards, resulting
in transitory inconsistencies in the schema. In short, a sharded database entails a
huge amount of operational effort and administrator skill.

Relational database vendors—Oracle, in particular—tried to create a relational database
implementation that could provide the scalability of a sharded database without the ACID and relational
compromises or operational headaches. Oracle’s Real Application Clusters (RAC) is the most significant
example of a transparently scalable, ACID compliant, relational cluster.

In Oracle RAC databases, each database node works with data located on shared storage devices. This
shared disk clustering is in contrast to the shared nothing model employed by other clustered databases,
which are more suited to data warehousing workloads. (We’ll compare shared disk and shared nothing
architectures in more detail in Chapter 8.)

New database nodes in RAC can be added without any data rebalancing, and a sort of distributed
memory cache is implemented across these database nodes. Oracle RAC showed a lot of promise, and
indeed is widely implemented. However, it failed as an alternative to the MySQL sharded model, for three
reasons: First, it was too expensive. Second, it failed to demonstrate the level of scalability required at the
biggest websites. Third, it became apparent that no ACID compliant database could ever satisfy the needs of
the world’s biggest websites. This last restriction was a sort of “laws of physics” constraint articulated in what
has come to be known as CAP theorem.

CAP Theorem
In 2000, Eric Brewer outlined the “CAP” conjecture, which was later granted theorem status when a
mathematical proof was provided. The CAP theorem says that in a distributed database system, you can
have at most only two of Consistency, Availability, and Partition tolerance. Consistency means that every

http://dx.doi.org/10.1007/978-1-4842-1329-2_8

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

44

user of the database has an identical view of the data at any given instant. Availability means that in the
event of a failure, the database remains operational. Partition tolerance means that the database can
maintain operations in the event of the network’s failing between two segments of the distributed system.

In 2000, the issue of partition tolerance was somewhat theoretical. Most systems resided in a single
data center, and redundant network connectivity within that data center prevented any partition from ever
occurring. If the data center failed, perhaps a failover data center would be bought online. However, there
were almost no true multiple data center applications.

But as web systems became global in scope and aspired to continual availability, partition tolerance
became a real issue. Consider the distributed application shown in Figure 3-3. In the event of the network
partition shown, the system has two choices: either show each user a different view of the data, or shut down
one of the partitions and disconnect one of the users.

Figure 3-3.  Network partition in a distributed database application

Oracle’s RAC solution, which of course supported the ACID transactional model, would choose
consistency. In the event of a network partition—known in Oracle circles as the “split brain” scenario—one
of the partitions would choose to shut down. However, in the context of a global social network application,
or a worldwide e-commerce system, the desired solution is to maintain availability even if some consistency
between users is sacrificed.

Eventual Consistency
CAP theorem provides a stark choice: if you want your system to be undisturbed by network partitions, you
must sacrifice strict consistency between partitions.

However, even without considerations of CAP theorem, ACID transactions were increasingly untenable
in large-scale distributed websites. This relates more to performance than to availability. In any highly
available database system, multiple copies of each data element must be maintained in order to allow
the system to continue operating in the event of node failure. In a globally distributed system, it becomes
increasingly desirable to distribute nodes around the world to reduce latency in various locations. To ensure

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

45

strict consistency, though, it becomes necessary to ensure that a database change is propagated to multiple
nodes synchronously and immediately. When one of those nodes is on the other side of the planet, this
creates an unavoidable increase in latency.

For banks, this sort of latency penalty is unavoidable. However, for many websites, including social
networks and certain e-commerce operations, this worldwide synchronous consistency is unnecessary. It
doesn’t matter if my friend in Australia can see my tweet a few seconds before my friend in America. As long
as both friends can see the tweet eventually, I’m happy.

This concept of eventual consistency has become a key characteristic of many NoSQL databases. The
concept was most notably outlined by Werner Vogels, CTO of Amazon, and was implemented in Amazon’s
Dynamo key-value store.

Amazon’s Dynamo
Amazon had pioneered many of the web technologies used in early Web 2.0, particularly the use of the
Perl language to glue together databases and web front ends. Early Amazon used Oracle databases as the
primary repository for catalogs, customer details, and orders. The load placed on the Oracle database was
tremendous, and several notable Amazon outages were associated with database failures.

Amazon tried splitting the website into multiple functional areas, each of which could have its own
dedicated database. They were also very early adopters of service-oriented architecture (SOA), in which
logical services such as get-product-details would be resolved not by SQL queries but by web service calls.
This abstracted the database from the application layer and allowed Amazon to experiment with alternative
database technologies.

In 2007, Amazon revealed details of an alternative nonrelational system that had been developed
internally to address the requirements of their massive online website.1 This system—called Dynamo—was
built with the following requirements in mind:

•	 Continuous availability: Even the shortest application outage was incredibly costly
for Amazon. The data store simply had to remain available under all foreseeable
circumstances.

•	 Network partition tolerant: As a global e-commerce vendor with customers and
data centers all around the world, Amazon was most concerned that a network
partition should not force a loss of availability, even if that loss of availability was
isolated to a particular geography.

•	 No-loss conflict resolution: Another of Amazon’s key requirements was that no
order or shopping cart update should ever be lost. So for instance, if the user added
items to his or her shopping cart from two different computers, both items should
show up in the final cart. Furthermore, there should be no circumstances under
which someone was blocked from adding an item to his or her cart, which implied
that there be no exclusive write locks on objects.

•	 Efficiency: The system needed to respond quickly, since it was well understood that
even small delays in website response time resulted in a significant reduction in
online sales. Online customers were notoriously fickle and impatient.

•	 Economy: This system needed to be able to run on commodity hardware.

•	 Incremental scalability: It should be possible to grow the system by adding servers
in small increments without manual maintenance or downtime.

Amazon was willing to compromise on a lot of features of existing databases in order to achieve
these goals.

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

46

Principally, the data store should relax consistency—within limits—if necessary in order to ensure
availability. The phrase “within limits” is important here: the system should favor availability over
consistency, but in a predictable, controllable, and manageable way. Also, the trade-off between consistency
and availability should be configurable—the application should be able to choose what happens if there is a
network partition, for instance.

Additionally, the data store need only support primary key-based access and need not support a data
model: the values retrieved by a key lookup would be unstructured binary objects. Unlike Google’s BigTable,
which had the design goal of storing massive files, the assumption for Dynamo was that most objects would
be small—under 1 MB.

Dynamo—and many of the systems that it inspired—explicitly attempted to achieve a different outcome
in terms of CAP theorem. Rather than try to always achieve consistency at the expense of network partition
tolerance, Dynamo would allow (though not require) consistency to be sacrificed instead. See Figure 3-4.

Figure 3-4.  Dynamo and ACID RDBMS mapped to CAP theorem limits

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

47

Dynamo has served as an architectural model for quite a few nonrelational databases. (We’ll look into
the gory details of Dynamo internals in Chapters 8 and 9.) Some of the key architectural characteristics of
Dynamo include:

•	 Consistent hashing: Consistent hashing is a scheme that uses the hash value of the
primary key to determine the nodes in the cluster responsible for that key and that
allows nodes to be added or removed from the cluster with minimal rebalancing
overhead. See below for more details.

•	 Tunable consistency: The application can specify trade-offs between consistency,
read performance, and write performance. It’s possible in Dynamo to specify strong
consistency, eventual consistency, or weak consistency. See below for more details.

•	 Data versioning: Since write operations will never be blocked, it is possible that
there will be multiple versions of an object in the system. Sometimes these can be
merged by the data store itself, but sometimes they will need to be resolved by the
application or user. For instance, if the buyer updates his or her shopping cart from
two computers, the resulting cart may have duplicate items that he or she may need
to remove.

There are lots of complex design features in the Dynamo system; many of these will be discussed in
Chapters 8 and 9. However, it would be remiss to continue without at least a little bit of elaboration on two of
the key features: consistent hashing and tunable consistency.

Consistent Hashing
When we hash a key value, we perform a mathematical computation on the key value and use that
computed value to determine where to store the data. One reason to use hashing is so that we are able to
evenly distribute the data across a certain number of slots. The most simple example is to use the modulo
function, which returns the remainder of a division. If we want to hash any number into 10 buckets, we can
use modulo 10; then key 27 would map to bucket 7, key 32 would map to bucket 2, key 25 to bucket 5, and so
on.

Using this method, we could map keys evenly across 10 servers. When we want to determine which
node should store a particular item, we would calculate its modulo and use the result to locate the node.
In practice, hashing functions are more complex than a simple modulo function, and a good hash function
always distributes the hash values evenly across nodes, regardless of any skew in key values.

Hashing works great as a way of distributing data evenly across a fixed number of nodes. But we have
a problem if we add or remove a node—we have to recalculate the hash values and redistribute all the
data. For instance, if we wanted to add a new server in the modulo 10 example above, we would recalculate
hashes using modulo 11 and then we would have to move almost every data item accordingly. Consistent
hashing works by hashing key values and applying a consistent method for allocating those hashed values to
specific nodes.

By convention and possibly federal law, consistent hashing schemes are represented as rings— because
the hash values “loop around” to 0. Figure 3-5 shows what happens when a node is added to an existing
cluster. Only those keys currently mapped to the “neighbors” of the new node need remapping.

http://dx.doi.org/10.1007/978-1-4842-1329-2_8
http://dx.doi.org/10.1007/978-1-4842-1329-2_9
http://dx.doi.org/10.1007/978-1-4842-1329-2_8
http://dx.doi.org/10.1007/978-1-4842-1329-2_9

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

48

Figure 3-5.  Adding a new node to the consistent hashing scheme

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

49

The remapping process when a new node is added is still an expensive operation, and in practice
Dynamo-based databases often employ a “virtual nodes” workaround to further reduce the overhead. This
mechanism is explained in detail in Chapter 8.

Tunable Consistency
Dynamo allows the application to choose the level of consistency applied to specific operations. NWR
notation describes how Dynamo will trade off consistency, read performance, and write performance:

•	 N is the number of copies of each data item that the database will maintain.

•	 W is the number of copies of the data item that must be written before the write can
complete.

•	 R is the number of copies that the application will access when reading the data
item.

When W = N, Dynamo will always write every copy before returning control to the application—this is
what ACID databases do when implementing synchronous replication. If the application is more concerned
about write performance than read performance, then it could set W = 1, R = N. Then each read must access
all copies to determine which is correct, but each write only has to touch a single copy of the data before
returning control (other writes propagate to all copies as a background task).

Probably the most common configuration is N > W > 1. More than one write must complete, but not all
nodes need to be updated immediately. Another common setting is W + R > N; this ensures that the latest
value will always be included in a read operation, even if it is mixed in with “older” values. This is sometimes
referred to as quorum assembly.

Figure 3-6 shows examples of various NWR settings. Depending on the settings, Dynamo can trade off
consistency, reliability, and performance.

http://dx.doi.org/10.1007/978-1-4842-1329-2_8

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

50

Figure 3-6.  Tunable consistency in Dynamo

Chapter 3 ■ Sharding, Amazon, and the Birth of NoSQL

51

Dynamo and the Key-value Store Family
Systems that implement one of the primary characteristics of Dynamo—the idea of a binary value retrieved
by primary key only—became generically known as key–value stores. Just as Google’s GFS and MapReduce
papers became the blueprint for Hadoop, Amazon’s Dynamo paper became the blueprint for many
key-value stores.

Web developers who were struggling with the operational complexity entailed by sharding and other
heroic database techniques had already started experimenting with various nonrelational designs. However,
with the release of Amazon’s Dynamo paper, these developers had a proven architectural model to build on.
The result was a relatively sudden burst of Dynamo-inspired systems in 2008–2009. These systems were the
first recognizable NoSQL databases.

It’s true that not all key–value stores were based explicitly on the Dynamo model. However, the list
of Dynamo-inspired systems is impressive, and it includes active databases such as Riak, LinkedIn’s
Voldemort, Cassandra, and of course, Amazon’s own DynamoDB. Some of these systems, such as Riak
and Voldemort, are more or less exact copies of the Dynamo architecture, while others use Dynamo in
conjunction with other concepts. For instance, Apache’s Cassandra implements Dynamo’s consistent
hashing and tunable consistency models, combined with a variation on the BigTable data model.

Although Dynamo represents the most popular and well-articulated key-value store architecture, there
are certainly key-value stores that owe little or nothing to the Dynamo design. These include systems such as
Redis and Oracle NoSQL.

Conclusion
We’ve seen that the challenge of maintaining highly available global websites proved inconsistent with
the ACID transaction model. Brewer’s CAP theorem—as well as practical experience—argue that a system
cannot aspire to both strong consistency and global availability in the event of an imperfect network like the
Internet. For most massive websites, continual availability may be more important than perfect consistency.

Attempts to deploy relational databases on the scale required by the largest web properties involved the
use of caching (Memcached, in particular), read-only replication, and sharding. This architectural pattern
effectively broke both the relational and the ACID properties of the database: once a database has been
sharded, ACID consistency and ad hoc SQL query access are lost. Nevertheless, the sharding solution has
proved to be effective at sites such as Twitter and Facebook.

Amazon—the pioneer of Internet retailers—abandoned the RDBMS as the core database in favor
of an internally developed, nonrelational key-value store called Dynamo. Dynamo implements eventual
consistency rather than strict consistency; updates to data are eventually guaranteed to be propagated
throughout the system, but may not be seen by every user instantaneously.

Dynamo has been a strong influence on the design of many other key-value stores, such as Riak and
Cassandra, and is the basis for Amazon’s cloud-based database DynamoDB. Systems such as Dynamo
enforce no structure on their payload. This makes them impenetrable to all but programmers. As we will see
in the next chapter, another class of databases—the document databases—extend the key-value concept by
requiring that values be structured in a self-describing format such as XML or JSON.

Note
	 1.	 http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

53

Chapter 4

Document Databases

A relational database is like a garage that forces you to take your car apart and store the
pieces in little drawers

—Object-oriented data community, mid-1990s

An Object database is like a closet which requires that you hang up your suit with tie,
underwear, belt, socks and shoes all attached.

—David Ensor, same period

A document database is a nonrelational database that stores data as structured documents, usually in XML
or JSON formats. The “document database” definition doesn’t imply anything specific beyond the document
storage model: document databases are free to implement ACID transactions or other characteristics of
a traditional RDBMS, though the dominant document databases provide relatively modest transactional
support.

JSON-based document databases flourished after the nonrelational breakout of 2008, for three
main reasons. First, they address the conflict between object-oriented programming and the relational
database model that had frustrated software developers, and that motivated much of the object-oriented
database movement of the mid-1990s. Second, because the self-describing document formats could be
interrogated independently of the program that had created them, they supported ad hoc query access to
the database that was absent in pure key-value stores. Third, they aligned well with the dominant web-based
programming paradigms, particularly the AJAX programming model.

A document database, by allowing some form of data description without enforcing a schema,
perhaps provides a happy medium between the rigid schema of the relational database and the completely
schema-less key-value stores. Programmers remain free to change the data model as requirements shift
within an application, but data consumers are still able to interrogate the data to determine its meaning.

The alignment with web-development programming practices has resulted in JSON document
databases—and the MongoDB database in particular—becoming the default choice for many web
developers.

■■ Note  Describing something as a document database only tells us that it stores data in XML or JSON
format. The term does not define any specific transaction or clustering model.

	 Chapter 15 Database Connectivity and Web Technologies 701

In the figure, note that PHP uses multiple tags to query and display the data returned
by the query. Take a closer look at the PHP functions:
•	 The odbc_connect function (line 11) opens a connection to the ODBC data source.

A handle to this database is set in the $dbc variable.
•	 The odbc_exec function (line 13) executes the SQL query stored in the $sql variable

against the $dbc database connection. The query’s result set is stored in the $rs variable.
•	 The while function (line 15) loops through the result set ($rs) and uses the ODBC_

FETCH_ROW function to get one row at a time from the result set. Notice that PHP
variables start with the dollar sign ($).

•	 The odbc_result function (lines 17−30) gets a column value from a row in the result
set and stores it in a variable. This function extracts the different values for each field
to be displayed and stores them in variables.

•	 The echo function (lines 32−47) outputs text to the webpage using the variables
defined in the previous lines. You can also combine text (HTML code) and PHP vari-
ables (lines 33–46) using the “.” delimiter.

•	 The odbc_close function closes the database connection.

FIGURE 15.12  PHP CODE TO QUERY THE VENDOR TABLE 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

702 Part 5 Databases and the Internet

The previous examples are just two of the many ways you can interface webpages and
databases to web applications. These examples only scratch the surface of the multiple
features that web application servers provide.

Current-generation systems involve more than just the development of web-enabled
database applications. They also require applications that can communicate with each
other and with other systems not based on the web. Clearly, systems must be able to
exchange data in a standard-based format. That is the role of XML.

15-3  Extensible Markup Language (XML)
Companies use the Internet to generate business transactions and integrate data to
increase efficiency and reduce costs. These transactions are known as electronic com-
merce (e-commerce); it enables all types of organizations to sell products and services to
a global market. E-commerce transactions—the sale of products or services—can take
place between businesses (business-to-business, or B2B) or between a business and a
consumer (business-to-consumer, or B2C).

Most e-commerce transactions take place between businesses. Because B2B
e-commerce integrates business processes among companies, it requires the trans-
fer of business information among different business entities. However, the way in
which businesses represent, identify, and use data tends to differ substantially from
company to company. As a simple example, some companies use the term product
code, while others use item ID.

Until recently, a purchase order traveling over the web was expected to be in the
form of an HTML document. The HTML webpage displayed on the web browser would
include formatting as well as the order details. HTML tags describe how something
looks on the webpage, such as typefaces and heading styles, and they often come in pairs
to start and end formatting features. For example, the following tags in angle brackets
would display FOR SALE in bold Arial font:

FOR SALE

If an application needs to get the order data from the webpage, there is no easy way to
extract details such as the order number, date, customer number, product code, quantity,
or price from an HTML document. The HTML document can only describe how to dis-
play the order in a web browser; it does not permit the manipulation of the order’s data
elements. To solve that problem, a new markup language known as Extensible Markup
Language was developed.

Extensible Markup Language (XML) is a meta-language used to represent and
manipulate data elements. XML is designed to facilitate the exchange of structured doc-
uments, such as orders and invoices, over the Internet. The World Wide Web Consor-
tium (W3C) published the first XML 1.0 standard definition in 1998, setting the stage
for giving XML the real-world appeal of being a true vendor-independent platform. It is
not surprising that XML has rapidly become the data exchange standard for e-commerce
applications.

The XML meta-language allows the definition of new tags, such as <ProdPrice>,
to describe the data elements used in an XML document. This ability to extend the
language explains the X in XML; the language is said to be extensible. XML is derived
from the Standard Generalized Markup Language (SGML), an international stan-
dard for the publication and distribution of highly complex technical documents.
For example, documents used by the aviation industry and the military services are
too complex and unwieldy for the web. Just like HTML, which was also derived from

tag
In markup languages
such as HTML and XML,
a command inserted in
a document to specify
how the document
should be formatted.
Tags are used in server-
side markup languages
and interpreted by
a web browser for
presenting data.

Extensible Markup
Language (XML)
A meta-language
used to represent
and manipulate data
elements. Unlike other
markup languages,
XML permits the
manipulation of a
document’s data
elements. XML facilitates
the exchange of
structured documents
such as orders and
invoices over the
Internet.

Online
Content

To learn more about
e-commerce, consult
Appendix I, Databases in
Electronic Commerce, at
www.cengagebrain.com.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 15 Database Connectivity and Web Technologies 703

SGML, an XML document is a text file. However, it has a few important additional
characteristics:
•	 XML allows the definition of new tags to describe data elements.
•	 XML is case sensitive: <ProductID>is not the same as <Productid>.
•	 XML must be well formed; that is, tags must be properly formatted. Most openings

also have a corresponding closing. For example, a product’s identification would
require the format <ProductId>2345-AA</ProductId>.

•	 XML must be properly nested. For example, properly nested XML might look like
this: <Product><ProductId>2345-AA</ProductId></Product>.

•	 You can use the <‐‐ and ‐‐> symbols to enter comments in the XML document.
•	 The XML and xml prefixes are reserved for XML only.

XML is not a new version or replacement for HTML. XML is concerned with the
description and representation of the data, rather than the way the data is displayed.
XML provides the semantics that facilitate the sharing, exchange, and manipulation
of structured documents over organizational boundaries. XML and HTML perform
complementary functions rather than overlapping functions. Extensible Hypertext
Markup Language (XHTML) is the next generation of HTML based on the XML
framework. The XHTML specification expands the HTML standard to include XML
features. Although it is more powerful than HTML, XHTML requires strict adherence
to syntax requirements.

To illustrate the use of XML for data exchange purposes, consider a B2B example in
which Company A uses XML to exchange product data with Company B over the Inter-
net. Figure 15.13 shows the contents of the productlist.xml document.

FIGURE 15.13  CONTENTS OF THE PRODUCTLIST.XML DOCUMENT 

The preceding example illustrates several important XML features:
•	 The first line represents the XML document declaration, and it is mandatory.
•	 Every XML document has a root element. In the example, the second line declares the

ProductList root element.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

704 Part 5 Databases and the Internet

•	 The root element contains child elements or subelements. In the example, line 3
declares Product as a child element of ProductList.

•	 Each element can contain subelements. For example, each Product element is com-
posed of several child elements, represented by P_CODE, P_DESCRIPT, P_INDATE,
P_QOH, P_MIN, and P_PRICE.
Once Company B receives productlist.xml, it can process the document, assuming

that it understands the tags created by Company A. The meaning of the XML in Fig-
ure 15.13 is fairly self-evident, but there is no easy way to validate the data or to check
whether the data is complete. For example, you could encounter a P_INDATE value of
“25/14/2016,” but is that value correct? What happens if Company B expects a Vendor
element as well? How can companies share data descriptions about their business data
elements? The next section shows how document type definitions and XML schemas are
used to address such concerns.

15-3a  Document Type Definitions (DTD) and XML Schemas
Companies that use B2B transactions must have a way to understand and validate each
other’s tags. One way to accomplish that task is through the use of document type defi-
nitions. A document type definition (DTD) is a file with a .dtd extension that describes
XML elements—in effect, a DTD file provides the composition of the database’s logical
model and defines the syntax rules or valid elements for each type of XML document.
(The DTD component is similar to having a public data dictionary for business data.)
Companies that intend to engage in e-commerce transactions must develop and share
DTDs. Figure 15.14 shows the productlist.dtd document for the productlist.xml docu-
ment shown earlier in Figure 15.13.

FIGURE 15.14  CONTENTS OF THE PRODUCTLIST.DTD DOCUMENT 

In Figure 15.14, the productlist.dtd file provides definitions of the elements in the
productlist.xml document. In particular, note the following:
•	 The first line declares the ProductList root element.
•	 The ProductList root element has one child, the Product element. The second line

describes the Product element.
•	 The plus symbol (+) indicates that Product occurs one or more times within

ProductList.
•	 An asterisk (*) would mean that the child element occurs zero or more times.
•	 The question mark (?) after P_INDATE and P_MIN indicates that they are optional

child elements.
•	 The third through eighth lines show that the Product element has six child elements.
•	 The #PCDATA keyword represents the actual text data.

document type
definition (DTD)
A file with a .dtd
extension that describes
XML elements; in effect,
a DTD file describes a
document’s composition
and defines the syntax
rules or valid tags for
each type of XML
document.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 15 Database Connectivity and Web Technologies 705

To be able to use a DTD file to define elements within an XML document,
the DTD must be referenced within that XML document. Figure 15.15 shows the
productlistv2.xml document that includes the reference to productlist.dtd in the
second line.

In Figure 15.15, note that P_INDATE and P_MIN do not appear in all Product defini-
tions because they were declared to be optional elements. The DTD can be referenced by
many XML documents of the same type. For example, if Company A routinely exchanges
product data with Company B, it will need to create the DTD only once. All subsequent
XML documents will refer to the DTD, and Company B will be able to verify the data
being received.

To further demonstrate the use of XML and DTD for e-commerce data exchanges,
consider the case of two companies exchanging order data. Figure 15.16 shows the DTD
and XML documents for that scenario.

Although the use of DTDs is a great improvement for data sharing over the web,
a DTD only provides descriptive information for understanding how the elements—
root, parent, child, mandatory, or optional—relate to one another. A DTD provides lim-
ited additional semantic value, such as data type support or data validation rules. That
information is very important for database administrators who are in charge of large
e-commerce databases. To solve the DTD problem, the W3C published an XML schema
standard that better describes XML data.

The XML schema is an advanced data definition language that is used to
describe the structure of XML data documents. This structure includes elements,
data types, relationship types, ranges, and default values. One of the main advan-
tages of an XML schema is that it more closely maps to database terminology and
features. For example, an XML schema can define common database types such as
date, integer, or decimal; minimum and maximum values; a list of valid values; and
required elements. Using the XML schema, a company would be able to validate
data for values that may be out of range, have incorrect dates, contain invalid val-
ues, and so on. For example, a university application must be able to specify that
a GPA value is between 0 and 4.0, and it must be able to detect an invalid birth
date such as “14/13/2016.” (There is no 14th month.) Many vendors are adopting
this new standard and are supplying tools to translate DTD documents into XML
schema definition documents. It is widely expected that XML schemas will replace
DTD as the method to describe XML data.

FIGURE 15.15  CONTENTS OF THE PRODUCTLISTV2.XML DOCUMENT 

XML schema
An advanced data
definition language used
to describe the elements,
data types, relationship
types, ranges, and
default values of XML
data documents. One of
the main advantages of
an XML schema is that
it more closely maps to
database terminology
and features.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

706 Part 5 Databases and the Internet

Unlike a DTD document, which uses a unique syntax, an XML schema definition
(XSD) file uses a syntax that resembles an XML document. Figure 15.17 shows the XSD
document for the OrderData XML document.

The code shown in Figure 15.17 is a simplified version of the XML schema document.
As you can see, the XML schema syntax is similar to the XML document syntax. How-
ever, the XML schema introduces additional semantic information for the OrderData
XML document, such as string, date, and decimal data types; required elements; and
minimum and maximum cardinalities for the data elements.

15-3b  XML Presentation
One of the main benefits of XML is that it separates data structure from its presentation
and processing. By separating the two, you can present the same data in different ways—
which is similar to having views in SQL. The Extensible Style Language (XSL) specifi-
cation provides the mechanism to display XML data. XSL is used to define the rules by
which XML data is formatted and displayed. The XSL specification is divided into two
parts: Extensible Style Language Transformations (XSLT) and XSL style sheets.
•	 Extensible Style Language Transformations (XSLT) describes the general mechanism that

is used to extract and process data from one XML document and enable its transforma-
tion within another document. Using XSLT, you can extract data from an XML docu-
ment and convert it into a text file, an HTML webpage, or a webpage that is formatted

FIGURE 15.16  DTD AND XML DOCUMENTS FOR ORDER DATA 

OrderData.dtd

OrderData.xml

“+” sign indicates
one or more

ORD_PRODS elements

Two ORD_PRODS
 elements in XML

document

XML schema
definition (XSD)
A file that contains the
description of an XML
document.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 15 Database Connectivity and Web Technologies 707

for a mobile device. What the user sees in those cases is actually a view (or HTML rep-
resentation) of the XML data. XSLT can also be used to extract certain elements from an
XML document, such as product codes and product prices, to create a product catalog.
XSLT can even be used to transform one XML document into another.

•	 XSL style sheets define the presentation rules applied to XML elements—somewhat
like presentation templates. The XSL style sheet describes the formatting options to
apply to XML elements when they are displayed on a browser, smartphone, tablet
screen, and so on.
Figure 15.18 illustrates the framework used by the various components to translate

XML documents into viewable webpages, an XML document, or some other document.

FIGURE 15.17  THE XML SCHEMA DOCUMENT FOR THE ORDER DATA 

FIGURE 15.18  FRAMEWORK FOR XML TRANSFORMATIONS 

HTML

XML
document

HTML

XSL
transformations

XSL
style sheets

•Extract
•Convert

XSLT can be used to transform one XML
document into another XML document.

Apply
formatting

rules to
XML

elements The process can render
different webpages

for different purposes,
such as one page for a

web browser and
another for a mobile device.

New
XML

document

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

708 Part 5 Databases and the Internet

15-3c  XML Applications
Now that you have some idea what XML is, how can you use it? What kinds of appli-
cations lend themselves particularly well to XML? This section lists some of the uses of
XML. Keep in mind that the future use of XML is limited only by the imagination and
creativity of developers, designers, and programmers.
•	 B2B exchanges. XML enables the exchange of B2B data, providing the standard for all

organizations that need to exchange data with partners, competitors, the government,
or customers. In particular, XML is positioned to replace EDI as the standard for
automation of the supply chain because it is less expensive and more flexible.

•	 Legacy systems integration. XML provides the “glue” to integrate legacy system data with
modern e-commerce web systems. Web and XML technologies could be used to inject
some new life into old but trusted legacy applications. Another example is the use of
XML to import transaction data from multiple databases to a data warehouse database.

•	 Webpage development. XML provides several features that make it a good fit for cer-
tain web development scenarios. For example, web portals with large amounts of per-
sonalized data can use XML to pull data from multiple external sources (such as news,
weather, and stock sites) and apply different presentation rules to format pages on
desktop computers as well as mobile devices.

•	 Database support. A DBMS that supports XML exchanges can integrate with external
systems such as the web, mobile data, and legacy systems, thus enabling the creation

To display the XML document with Windows Internet Explorer (IE), enter the URL
of the XML document in the browser’s address bar. Figure 15.19 is based on the product-
list.xml document created earlier. As you examine Figure 15.19, note that IE shows the
XML data in a color-coded, collapsible, tree-like structure. (Actually, this is the IE default
style sheet that is used to render XML documents.)

FIGURE 15.19  DISPLAYING XML DOCUMENTS 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 15 Database Connectivity and Web Technologies 709

of new types of systems. These databases can import or export data in XML format
or generate XML documents from SQL queries while still storing the data using their
native data model format. An example is the use of the FOR XML clause in the SQL
SELECT statement in SQL Server. Alternatively, a DBMS can also support an XML
data type to store XML data in its native format—enabling support to store tree-like
hierarchical structures inside a relational structure.

•	 Database metadictionaries. XML is also used to create metadictionaries, or vocabular-
ies, for entire industries. Examples of metadictionaries include HR-XML for the human
resources industry, the metadata encoding and transmission standard (METS) from the
Library of Congress, the clinical accounting information (CLAIM) data exchange standard
for patient data exchange in electronic medical record systems, and the extensible business
reporting language (XBRL) standard for exchanging business and financial information.

•	 XML databases.1 Most databases on the market support XML to manage data in some
shape or form. The approaches range from simple middleware XML software to object
databases with XML interfaces to full XML database engines and servers. XML data-
bases provide for the storage of data in complex relationships. For example, an XML
database would be well suited to store the contents of a book. The book’s structure
would dictate its database structure: a book typically consists of chapters, sections,
paragraphs, figures, charts, footnotes, endnotes, and so on. Examples of databases
with XML data type support are Oracle, IBM DB2, and MS SQL Server. Fully XML
databases examples are Tamino from Software AG (www.softwareag.com) and the
open source dbXML from http://sourceforge.net/projects/dbxml-core.

•	 XML services. Many companies are already working to develop a new breed of
services based on XML and web technologies. These services break down the
interoperability barriers among systems and companies alike. XML provides the
infrastructure that helps heterogeneous systems to work together across the desk,
the street, and the world. Services would use XML and other Internet technologies
to publish their interfaces. Other services that want to interact with existing ser-
vices would locate them and learn their vocabulary (service request and replies) to
establish a “conversation.”
One area in which Internet, web, virtualization, and XML technologies work together

in innovative ways to leverage IT services is cloud computing.

15-4  Cloud Computing Services
You have almost certainly heard about the “cloud” from the thousands of publica-
tions and TV ads that have used the term over the years, although it has represented
different concepts. In the late 1980s, the term cloud was used by telecommunication
companies to describe their data networks. In the late 1990s, during the peak of
Internet growth, the term depicted the Internet itself. Then, in 2006, Google and
Amazon began using the term cloud computing to describe a new set of innovative
web-based services. Google, Yahoo, eBay, and Amazon were early adopters of this
new computing paradigm.

But what exactly is cloud computing? According to the National Institute of Standards
and Technology (NIST),2 cloud computing is “a computing model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computer resources
1 �For a comprehensive analysis of XML database products, see “XML Database Products” by Ronald Bourret
at www.rpbourret.com.

2 �Recommendations of the National Institute of Standards and Technology, Peter Mell and Timothy Grance,
Special Publication 800–145 (Draft), January 2011.

cloud computing
A computing model that
provides ubiquitous,
on-demand access
to a shared pool of
configurable resources
that can be rapidly
provisioned.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

