
PART 4
Advanced Database Concepts

10 Transaction Management and Concurrency Control

11
12
13
14

Database Performance Tuning and Query Optimization

Distributed Database Management Systems

Business Intelligence and Data Warehouses

Big Data Analytics and NoSQL

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10
Transaction Management and Concurrency Control

In this chapter, you will learn:
•	About database transactions and their properties
•	What concurrency control is and what role it plays in maintaining the database’s integrity
•	What locking methods are and how they work
•	How stamping methods are used for concurrency control
•	How optimistic methods are used for concurrency control
•	How database recovery management is used to maintain database integrity

Preview Database transactions reflect real-world transactions that are triggered by events such as
buying a product, registering for a course, or making a deposit into a checking account.
Transactions are likely to contain many parts, such as updating a customer’s account,
adjusting product inventory, and updating the seller’s accounts receivable. All parts of a
transaction must be successfully completed to prevent data integrity problems. Therefore,
executing and managing transactions are important database system activities.

In this chapter you will learn about the main properties of database transactions (ato-
micity, consistency, isolation, and durability, plus serializability for concurrent trans-
actions). After defining the transaction properties, the chapter shows how SQL can be
used to represent transactions, and how transaction logs can ensure the DBMS’s ability to
recover transactions.

When many transactions take place at the same time, they are called concurrent trans-
actions. Managing the execution of such transactions is called concurrency control. This
chapter discusses some of the problems that can occur with concurrent transactions (lost
updates, uncommitted data, and inconsistent retrievals) and the most common algo-
rithms for concurrency control: locks, time stamping, and optimistic methods. Finally,
you will see how database recovery management can ensure that a database’s contents are
restored to a valid consistent state in case of a hardware or software failure.

Data Files Available on cengagebrain.com

Data Files and Available Formats
MS Access Oracle MS SQL My SQL

CH10_SaleCo 	 P	 P	 P	 P CH10_ABC_Markets	 P	 P	 P	 P

MS Access Oracle MS SQL My SQL

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 483

10-1  What Is a Transaction?
To illustrate what transactions are and how they work, use the Ch10_SaleCo database.
The relational diagram for the database is shown in Figure 10.1.

As you examine the relational diagram in Figure 10.1, note the following features:
•	 The design stores the customer balance (CUST_BALANCE) value in the CUSTOMER

table to indicate the total amount owed by the customer. The CUST_BALANCE attri-
bute is increased when the customer makes a purchase on credit, and it is decreased
when the customer makes a payment. Including the current customer account bal-
ance in the CUSTOMER table makes it easy to write a query to determine the current
balance for any customer and to generate important summaries such as total, average,
minimum, and maximum balances.

•	 The ACCT_TRANSACTION table records all customer purchases and payments
to track the details of customer account activity.
You could change the design of the Ch10_SaleCo database to reflect accounting

practice more precisely, but the implementation provided here will enable you to track
the transactions well enough to understand the chapter’s discussions.

FIGURE 10.1  THE CH10_SALECO DATABASE RELATIONAL DIAGRAM 

Although SQL commands illustrate several transaction and concurrency control issues, you
should be able to follow the discussions even if you have not studied Chapter 7, Intro-
duction to Structured Query Language (SQL), and Chapter 8, Advanced SQL. If you don’t
know SQL, ignore the SQL commands and focus on the discussions. If you have a working
knowledge of SQL, you can use the Ch10_SaleCo database to generate your own SELECT
and UPDATE examples and to augment the material in Chapters 7 and 8 by writing your
own triggers and stored procedures.

Note

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

484 Part 4 Advanced Database Concepts

To understand the concept of a transaction, suppose that you sell a product to a customer.
Furthermore, suppose that the customer may charge the purchase to his or her account.
Given that scenario, your sales transaction consists of at least the following parts:
•	 You must write a new customer invoice.
•	 You must reduce the quantity on hand in the product’s inventory.
•	 You must update the account transactions.
•	 You must update the customer balance.

The preceding sales transaction must be reflected in the database. In database terms,
a transaction is any action that reads from or writes to a database. A transaction may
consist of the following:
•	 A simple SELECT statement to generate a list of table contents.
•	 A series of related UPDATE statements to change the values of attributes in various

tables.
•	 A series of INSERT statements to add rows to one or more tables.
•	 A combination of SELECT, UPDATE, and INSERT statements.

The sales transaction example includes a combination of INSERT and UPDATE
statements.

Given the preceding discussion, you can augment the definition of a transaction. A
transaction is a logical unit of work that must be entirely completed or entirely aborted; no
intermediate states are acceptable. In other words, a multicomponent transaction, such as
the previously mentioned sale, must not be partially completed. Updating only the inven-
tory or only the accounts receivable is not acceptable. All of the SQL statements in the
transaction must be completed successfully. If any of the SQL statements fail, the entire
transaction is rolled back to the original database state that existed before the transaction
started. A successful transaction changes the database from one consistent state to another.
A consistent database state is one in which all data integrity constraints are satisfied.

To ensure consistency of the database, every transaction must begin with the database
in a known consistent state. If the database is not in a consistent state, the transaction
will yield an inconsistent database that violates its integrity and business rules. For that
reason, subject to limitations discussed later, all transactions are controlled and executed
by the DBMS to guarantee database integrity.

Most real-world database transactions are formed by two or more database requests.
A database request is the equivalent of a single SQL statement in an application pro-
gram or transaction. For example, if a transaction is composed of two UPDATE state-
ments and one INSERT statement, the transaction uses three database requests. In turn,
each database request generates several input/output (I/O) operations that read from or
write to physical storage media.

10-1a  Evaluating Transaction Results
Not all transactions update the database. Suppose that you want to examine the
CUSTOMER table to determine the current balance for customer number 10016.
Such a transaction can be completed by using the following SQL code:

SELECT CUST_NUMBER, CUST_BALANCE
FROM CUSTOMER
WHERE CUST_NUMBER = 10016;

Although the query does not make any changes in the CUSTOMER table, the SQL
code represents a transaction because it accesses the database. If the database existed in

transaction
A sequence of database
requests that accesses
the database. A
transaction is a logical
unit of work; that is,
it must be entirely
completed or aborted—
no intermediate ending
states are accepted.
All transactions must
have the properties of
atomicity, consistency,
isolation, and durability.

consistent database
state
A database state in
which all data integrity
constraints are satisfied.

database request
The equivalent of a
single SQL statement in
an application program
or a transaction.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 485

a consistent state before the access, the database remains in a consistent state after the
access because the transaction did not alter the database.

Remember that a transaction may consist of a single SQL statement or a collection of
related SQL statements. Revisit the previous sales example to illustrate a more complex
transaction, using the Ch10_SaleCo database. Suppose that on January 18, 2016, you
register the credit sale of one unit of product 89-WRE-Q to customer 10016 for $277.55.
The required transaction affects the INVOICE, LINE, PRODUCT, CUSTOMER, and
ACCT_TRANSACTION tables. The SQL statements that represent this transaction are
as follows:

INSERT INTO INVOICE
VALUES (1009, 10016,'18-Jan-2016', 256.99, 20.56, 277.55, 'cred', 0.00, 277.55);

INSERT INTO LINE
VALUES (1009, 1, '89-WRE-Q', 1, 256.99, 256.99);

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 1
WHERE PROD_CODE = '89-WRE-Q';

UPDATE CUSTOMER
SET CUST_BALANCE = CUST_BALANCE + 277.55
WHERE CUST_NUMBER = 10016;

INSERT INTO ACCT_TRANSACTION
VALUES (10007, '18-Jan-16', 10016, 'charge', 277.55);

COMMIT;

The results of the successfully completed transaction are shown in Figure 10.2.
(All records involved in the transaction are outlined in red.)

FIGURE 10.2  TRACING THE TRANSACTION IN THE CH10_SALECO DATABASE 

Table name: PRODUCT

Table name: INVOICE Table name: LINE
Database name: Ch10_SaleCo

Table name: ACCT_TRANSACTIONTable name: CUSTOMER

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

486 Part 4 Advanced Database Concepts

To better understand the transaction results, note the following:
•	 A new row 1009 was added to the INVOICE table. In this row, derived attribute values

were stored for the invoice subtotal, the tax, the invoice total, and the invoice balance.
•	 The LINE row for invoice 1009 was added to reflect the purchase of one unit of prod-

uct 89-WRE-Q with a price of $256.99. In this row, the derived attribute values for the
line amount were stored.

•	 Product 89-WRE-Q’s quantity on hand (PROD_QOH) in the PRODUCT table was
reduced by one, from 12 to 11.

•	 The customer balance (CUST_BALANCE) for customer 10016 was updated by
adding $277.55 to the existing balance (the initial value was $0.00).

•	 A new row was added to the ACCT_TRANSACTION table to reflect the new account
transaction number 10007.

•	 The COMMIT statement was used to end a successful transaction. (See Section 10-1c.)
Now suppose that the DBMS completes the first three SQL statements. Further-

more, suppose that during the execution of the fourth statement (the UPDATE of the
CUSTOMER table’s CUST_BALANCE value for customer 10016), the computer system
loses electrical power. If the computer does not have a backup power supply, the transaction
cannot be completed. Therefore, the INVOICE and LINE rows were added, and the PROD-
UCT table was updated to represent the sale of product 89-WRE-Q, but customer 10016
was not charged, nor was the required record written in the ACCT_TRANSACTION table.
The database is now in an inconsistent state, and it is not usable for subsequent transac-
tions. Assuming that the DBMS supports transaction management, the DBMS will roll back
the database to a previous consistent state.

Although the DBMS is designed to recover a database to a previous consistent

By default, MS Access does not support transaction management as discussed here. More
sophisticated DBMSs, such as Oracle, SQL Server, and DB2, support the transaction man-
agement components discussed in this chapter. MS Access supports transaction manage-
ment though specialized application programing interfaces (API) such as the Workspace or
the DBEngine objects of the Data Access Objects (DAO) database middleware (see Chapter
15, Database Connectivity and Web Technologies for more information.)

Note

state when an interruption prevents the completion of a transaction, the transaction
itself is defined by the end user or programmer and must be semantically correct. The
DBMS cannot guarantee that the semantic meaning of the transaction truly represents
the real-world event. For example, suppose that following the sale of 10 units of product
89-WRE-Q, the inventory UPDATE commands were written this way:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = '89-WRE-Q';

The sale should have decreased the PROD_QOH value for product 89-WRE-Q by 10.
Instead, the UPDATE added 10 to product 89-WRE-Q’s PROD_QOH value.

Although the UPDATE command’s syntax is correct, its use yields incorrect results,

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 487

that is, a database inconsistent with the real-world event. Yet, the DBMS will execute the
transaction anyway. The DBMS cannot evaluate whether the transaction represents the
real-world event correctly; that is the end user’s responsibility. End users and program-
mers are capable of introducing many errors in this fashion. Imagine the consequences
of reducing the quantity on hand for product 1546-QQ2 instead of product 89-WRE-Q
or of crediting the CUST_BALANCE value for customer 10012 rather than customer
10016.

Clearly, improper or incomplete transactions can have a devastating effect on
database integrity. Some DBMSs—especially the relational variety—provide means
by which the user can define enforceable constraints based on business rules. Other
integrity rules, such as those governing referential and entity integrity, are enforced
automatically by the DBMS when the table structures are properly defined, thereby
letting the DBMS validate some transactions. For example, if a transaction inserts a
new customer number into a customer table and the number already exists, the DBMS
will end the transaction with an error code to indicate a violation of the primary key
integrity rule.

10-1b  Transaction Properties
Each individual transaction must display atomicity, consistency, isolation, and durability.
These four properties are sometimes referred to as the ACID test. Let’s look briefly at
each of the properties.
•	 Atomicity requires that all operations (SQL requests) of a transaction be completed;

if not, the transaction is aborted. If a transaction T1 has four SQL requests, all four
requests must be successfully completed; otherwise, the entire transaction is aborted.
In other words, a transaction is treated as a single, indivisible, logical unit of work.

•	 Consistency indicates the permanence of the database’s consistent state. A trans-
action takes a database from one consistent state to another. When a transaction is
completed, the database must be in a consistent state. If any of the transaction parts
violates an integrity constraint, the entire transaction is aborted.

•	 Isolation means that the data used during the execution of a transaction cannot be
used by a second transaction until the first one is completed. In other words, if trans-
action T1 is being executed and is using the data item X, that data item cannot be
accessed by any other transaction (T2 … Tn) until T1 ends. This property is particu-
larly useful in multiuser database environments because several users can access and
update the database at the same time.

•	 Durability ensures that once transaction changes are done and committed, they can-
not be undone or lost, even in the event of a system failure.
In addition to the individual transaction properties indicated above, there is another

important property that applies when executing multiple transactions concurrently. For
example, let’s assume that the DBMS has three transactions (T1, T2 and T3) executing at
the same time. To properly carry out transactions, the DBMS must schedule the concur-
rent execution of the transaction’s operations. In this case, each individual transaction
must comply with the ACID properties and, at the same time, the schedule of such mul-
tiple transaction operations must exhibit the property of serializability. Serializability
ensures that the schedule for the concurrent execution of the transactions yields consis-
tent results. This property is important in multiuser and distributed databases in which
multiple transactions are likely to be executed concurrently. Naturally, if only a single
transaction is executed, serializability is not an issue.

atomicity
The transaction property
that requires all parts of a
transaction to be treated
as a single, indivisible,
logical unit of work. All
parts of a transaction
must be completed or
the entire transaction is
aborted.

consistency
A database condition in
which all data integrity
constraints are satisfied.
To ensure consistency
of a database, every
transaction must begin
with the database in a
known consistent state.
If not, the transaction
will yield an inconsistent
database that violates its
integrity and business
rules.

isolation
A database transaction
property in which a
data item used by
one transaction is
not available to other
transactions until the
first one ends.

durability
The transaction property
that ensures that once
transaction changes are
done and committed,
they cannot be undone
or lost, even in the event
of a system failure.

serializability
A property in which
the selected order of
concurrent transaction
operations creates the
same final database
state that would have
been produced if the
transactions had been
executed in a serial
fashion.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

488 Part 4 Advanced Database Concepts

A single-user database system automatically ensures serializability and isolation of
the database because only one transaction is executed at a time. The atomicity, consis-
tency, and durability of transactions must be guaranteed by single-user DBMSs. (Even a
single-user DBMS must manage recovery from errors created by OS-induced interrup-
tions, power interruptions, and abnormal application terminations or crashes.)

Multiuser databases are typically subject to multiple concurrent transactions. There-
fore, the multiuser DBMS must implement controls to ensure serializability and isolation
of transactions—in addition to atomicity and durability—to guard the database’s consis-
tency and integrity. For example, if several concurrent transactions are executed over the
same data set and the second transaction updates the database before the first transac-
tion is finished, the isolation property is violated and the database is no longer consistent.
The DBMS must manage the transactions by using concurrency control techniques to
avoid undesirable situations.

10-1c  Transaction Management with SQL
The American National Standards Institute (ANSI) has defined standards that govern
SQL database transactions. Transaction support is provided by two SQL statements:
COMMIT and ROLLBACK. The ANSI standards require that when a transaction
sequence is initiated by a user or an application program, the sequence must continue
through all succeeding SQL statements until one of the following four events occurs:
•	 A COMMIT statement is reached, in which case all changes are permanently recorded

within the database. The COMMIT statement automatically ends the SQL transaction.
•	 A ROLLBACK statement is reached, in which case all changes are aborted and the

database is rolled back to its previous consistent state.
•	 The end of a program is successfully reached, in which case all changes are perma-

nently recorded within the database. This action is equivalent to COMMIT.
•	 The program is abnormally terminated, in which case the database changes are

aborted and the database is rolled back to its previous consistent state. This action is
equivalent to ROLLBACK.
The use of COMMIT is illustrated in the following simplified sales example, which

updates a product’s quantity on hand (PROD_QOH) and the customer’s balance when
the customer buys two units of product 1558-QW1 priced at $43.99 per unit (for a total
of $87.98) and charges the purchase to the customer’s account:

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH – 2
WHERE PROD_CODE = '1558-QW1';
UPDATE CUSTOMER
SET CUST_BALANCE = CUST_BALANCE + 87.98
WHERE CUST_NUMBER = '10011';
COMMIT;

(Note that the example is simplified to make it easy to trace the transaction. In the
Ch10_SaleCo database, the transaction would involve several additional table updates.)

The COMMIT statement used in the preceding example is not necessary if the
UPDATE statement is the application’s last action and the application terminates nor-
mally. However, good programming practice dictates that you include the COMMIT
statement at the end of a transaction declaration.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 489

A transaction begins implicitly when the first SQL statement is encountered. Not all
SQL implementations follow the ANSI standard; some (such as SQL Server) use trans-
action management statements such as the following to indicate the beginning of a new
transaction:

BEGIN TRANSACTION;

Other SQL implementations allow you to assign characteristics for the transactions
as parameters to the BEGIN statement. For example, the Oracle RDBMS uses the SET
TRANSACTION statement to declare the start of a new transaction and its properties.

10-1d  The Transaction Log
A DBMS uses a transaction log to keep track of all transactions that update the data-
base. The DBMS uses the information stored in this log for a recovery requirement
triggered by a ROLLBACK statement, a program’s abnormal termination, or a system
failure such as a network discrepancy or a disk crash. Some RDBMSs use the trans-
action log to recover a database forward to a currently consistent state. After a server
failure, for example, Oracle automatically rolls back uncommitted transactions and
rolls forward transactions that were committed but not yet written to the physical
database. This behavior is required for transactional correctness and is typical of any
transactional DBMS.

While the DBMS executes transactions that modify the database, it also automatically
updates the transaction log. The transaction log stores the following:

•	 A record for the beginning of the transaction.

•	 For each transaction component (SQL statement):

–– The type of operation being performed (INSERT, UPDATE, DELETE).

–– The names of the objects affected by the transaction (the name of the table).

–– The “before” and “after” values for the fields being updated.

–– Pointers to the previous and next transaction log entries for the same transaction.

•	 The ending (COMMIT) of the transaction.
Although using a transaction log increases the processing overhead of a DBMS, the

ability to restore a corrupted database is worth the price.
Table 10.1 illustrates a simplified transaction log that reflects a basic transaction

composed of two SQL UPDATE statements. If a system failure occurs, the DBMS will
examine the transaction log for all uncommitted or incomplete transactions and restore
(ROLLBACK) the database to its previous state on the basis of that information. When
the recovery process is completed, the DBMS will write in the log all committed transac-
tions that were not physically written to the database before the failure occurred.

If a ROLLBACK is issued before the termination of a transaction, the DBMS will
restore the database only for that particular transaction, rather than for all of them, to
maintain the durability of the previous transactions. In other words, committed transac-
tions are not rolled back.

The transaction log is a critical part of the database, and it is usually implemented as
one or more files that are managed separately from the actual database files. The trans-
action log is subject to common dangers such as disk-full conditions and disk crashes.
Because the transaction log contains some of the most critical data in a DBMS, some
implementations support logs on several different disks to reduce the consequences
of a system failure.

transaction log
A feature used by
the DBMS to keep
track of all transaction
operations that update
the database. The
information stored in this
log is used by the DBMS
for recovery purposes.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

490 Part 4 Advanced Database Concepts

10-2  Concurrency Control
Coordinating the simultaneous execution of transactions in a multiuser database system
is known as concurrency control. The objective of concurrency control is to ensure the
serializability of transactions in a multiuser database environment. To achieve this goal,
most concurrency control techniques are oriented toward preserving the isolation prop-
erty of concurrently executing transactions. Concurrency control is important because
the simultaneous execution of transactions over a shared database can create several data
integrity and consistency problems. The three main problems are lost updates, uncom-
mitted data, and inconsistent retrievals.

10-2a  Lost Updates
The lost update problem occurs when two concurrent transactions, T1 and T2, are
updating the same data element and one of the updates is lost (overwritten by the
other transaction). To see an illustration of lost updates, examine a simple PROD-
UCT table. One of the table’s attributes is a product’s quantity on hand (PROD_
QOH). Assume that you have a product whose current PROD_QOH value is 35.
Also assume that two concurrent transactions, T1 and T2, occur and update the
PROD_QOH value for some item in the PRODUCT table. The transactions are
shown in Table 10.2.

TABLE 10.2

TWO CONCURRENT TRANSACTIONS TO UPDATE QOH

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100

T2: Sell 30 units PROD_QOH = PROD_QOH − 30

TABLE 10.1

A TRANSACTION LOG

TRL_
ID

TRX_
NUM

PREV
PTR

NEXT
PTR

OPERATION TABLE ROW ID ATTRIBUTE BEFORE
VALUE

AFTER
VALUE

341 101 Null 352 START ****Start
Transaction

352 101 341 363 UPDATE PRODUCT 1558-QW1 PROD_QOH 25 23

363 101 352 365 UPDATE CUSTOMER 10011 CUST_
BALANCE

525.75 615.73

365 101 363 Null COMMIT **** End of
Transaction

TRL_ID = Transaction log record ID
TRX_NUM = Transaction number
PTR = Pointer to a transaction log record ID

(Note: The transaction number is automatically assigned by the DBMS.)

concurrency control
A DBMS feature that
coordinates the
simultaneous execution
of transactions in
a multiprocessing
database system while
preserving data integrity.

lost update
A concurrency control
problem in which a data
update is lost during the
concurrent execution of
transactions.

Table 10.3 shows the serial execution of the transactions under normal circumstances,
yielding the correct answer PROD_QOH = 105.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 491

However, suppose that a transaction can read a product’s PROD_QOH value from
the table before a previous transaction has been committed, using the same product. The
sequence depicted in Table 10.4 shows how the lost update problem can arise. Note that
the first transaction (T1) has not yet been committed when the second transaction (T2)
is executed. Therefore, T2 still operates on the value 35, and its subtraction yields 5 in
memory. In the meantime, T1 writes the value 135 to disk, which is promptly overwrit-
ten by T2. In short, the addition of 100 units is “lost” during the process.

TABLE 10.3

SERIAL EXECUTION OF TWO TRANSACTIONS

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 + 100

3 T1 Write PROD_QOH 135

4 T2 Read PROD_QOH 135

5 T2 PROD_QOH = 135 − 30

6 T2 Write PROD_QOH 105

TABLE 10.4

LOST UPDATES

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35

2 T2 Read PROD_QOH 35

3 T1 PROD_QOH = 35 + 100

4 T2 PROD_QOH = 35 − 30

5 T1 Write PROD_QOH (lost update) 135

6 T2 Write PROD_QOH 5

TABLE 10.5

TRANSACTIONS CREATING AN UNCOMMITTED DATA PROBLEM

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)

T2: Sell 30 units PROD_QOH = PROD_QOH − 30

uncommitted data
A concurrency control
problem in which a
transaction accesses
uncommitted data from
another transaction.

10-2b  Uncommitted Data
The phenomenon of uncommitted data occurs when two transactions, T1 and T2,
are executed concurrently and the first transaction (T1) is rolled back after the second
transaction (T2) has already accessed the uncommitted data—thus violating the iso-
lation property of transactions. To illustrate that possibility, use the same transactions
described during the lost updates discussion. T1 has two atomic parts, one of which is
the update of the inventory; the other possible part is the update of the invoice total (not
shown). T1 is forced to roll back due to an error during the updating of the invoice’s total;
it rolls back all the way, undoing the inventory update as well. This time the T1 transac-
tion is rolled back to eliminate the addition of the 100 units. (See Table 10.5.) Because T2
subtracts 30 from the original 35 units, the correct answer should be 5.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

492 Part 4 Advanced Database Concepts

Table 10.6 shows how the serial execution of these transactions yields the correct
answer under normal circumstances.

Table 10.7 shows how the uncommitted data problem can arise when the ROLLBACK
is completed after T2 has begun its execution.

TABLE 10.6

CORRECT EXECUTION OF TWO TRANSACTIONS

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 + 100

3 T1 Write PROD_QOH 135

4 T1 *****ROLLBACK ***** 35

5 T2 Read PROD_QOH 35

6 T2 PROD_QOH = 35 − 30

7 T2 Write PROD_QOH 5

TABLE 10.7

AN UNCOMMITTED DATA PROBLEM

TIME TRANSACTION STEP STORED VALUE
1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 + 100

3 T1 Write PROD_QOH 135

4 T2 Read PROD_QOH (Read uncommitted data) 135

5 T2 PROD_QOH = 135 − 30

6 T1 ***** ROLLBACK ***** 35

7 T2 Write PROD_QOH 105

10-2c  Inconsistent Retrievals
Inconsistent retrievals occur when a transaction accesses data before and after one or
more other transactions finish working with such data. For example, an inconsistent
retrieval would occur if transaction T1 calculated some summary (aggregate) function
over a set of data while another transaction (T2) was updating the same data. The prob-
lem is that the transaction might read some data before it is changed and other data after
it is changed, thereby yielding inconsistent results.

To illustrate the problem, assume the following conditions:
1.	 T1 calculates the total quantity on hand of the products stored in the PRODUCT

table.

2.	 At the same time, T2 updates the quantity on hand (PROD_QOH) for two of the
PRODUCT table’s products.
The two transactions are shown in Table 10.8.

inconsistent
retrievals
A concurrency control
problem that arises
when a transaction-
calculating summary
(aggregate) functions
over a set of data while
other transactions are
updating the data,
yielding erroneous
results.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 493

While T1 calculates the total quantity on hand (PROD_QOH) for all items, T2 rep-
resents the correction of a typing error: the user added 10 units to product 1558-QW1’s
PROD_QOH but meant to add the 10 units to product 1546-QQ2’s PROD_QOH. To
correct the problem, the user adds 10 to product 1546-QQ2’s PROD_QOH and sub-
tracts 10 from product 1558-QW1’s PROD_QOH. (See the two UPDATE statements in
Table 10.8.) The initial and final PROD_QOH values are reflected in Table 10.9. (Only a
few PROD_CODE values are shown for the PRODUCT table. To illustrate the point, the
sum for the PROD_QOH values is shown for these few products.)

Although the final results shown in Table 10.9 are correct after the adjustment, Table
10.10 demonstrates that inconsistent retrievals are possible during the transaction execu-
tion, making the result of T1’s execution incorrect. The “After” summation shown in Table
10.10 reflects that the value of 25 for product 1546-QQ2 was read after the WRITE state-
ment was completed. Therefore, the “After” total is 40 + 25 = 65. The “Before” total reflects
that the value of 23 for product 1558-QW1 was read before the next WRITE statement was
completed to reflect the corrected update of 13. Therefore, the “Before” total is 65 + 23 = 88.

The computed answer of 102 is obviously wrong because you know from Table 10.9
that the correct answer is 92. Unless the DBMS exercises concurrency control, a multiuser
database environment can create havoc within the information system.

10-2d  The Scheduler
You now know that severe problems can arise when two or more concurrent transactions
are executed. You also know that a database transaction involves a series of database I/O
operations that take the database from one consistent state to another. Finally, you know

TABLE 10.8

RETRIEVAL DURING UPDATE

TRANSACTION T1 TRANSACTION T2
SELECT SUM(PROD_QOH) FROM PRODUCT UPDATE PRODUCT

SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = 1546-QQ2

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH − 10
WHERE PROD_CODE = 1558-QW1

COMMIT;

TABLE 10.9

TRANSACTION RESULTS: DATA ENTRY CORRECTION

BEFORE AFTER
PROD_CODE PROD_QOH PROD_QOH
11QER/31 8 8

13-Q2/P2 32 32

1546-QQ2 15 (15 + 10)    25

1558-QW1 23 (23 − 10)    13

2232-QTY 8 8

2232-QWE 6 6

Total 92 92

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

494 Part 4 Advanced Database Concepts

that database consistency can be ensured only before and after the execution of transac-
tions. A database always moves through an unavoidable temporary state of inconsistency
during a transaction’s execution if such a transaction updates multiple tables and rows.
(If the transaction contains only one update, then there is no temporary inconsistency.)
The temporary inconsistency exists because a computer executes the operations serially,
one after another. During this serial process, the isolation property of transactions pre-
vents them from accessing the data not yet released by other transactions. This consider-
ation is even more important today, with the use of multicore processors that can execute
several instructions at the same time. What would happen if two transactions executed
concurrently and they were accessing the same data?

In previous examples, the operations within a transaction were executed in an arbi-
trary order. As long as two transactions, T1 and T2, access unrelated data, there is no
conflict and the order of execution is irrelevant to the final outcome. However, if the
transactions operate on related data or the same data, conflict is possible among the
transaction components and the selection of one execution order over another might
have some undesirable consequences. So, how is the correct order determined, and who
determines that order? Fortunately, the DBMS handles that tricky assignment by using
a built-in scheduler.

The scheduler is a special DBMS process that establishes the order in which the oper-
ations are executed within concurrent transactions. The scheduler interleaves the exe-
cution of database operations to ensure serializability and isolation of transactions. To
determine the appropriate order, the scheduler bases its actions on concurrency control
algorithms, such as locking or time stamping methods, which are explained in the next
sections. However, it is important to understand that not all transactions are serializable.
The DBMS determines what transactions are serializable and proceeds to interleave the
execution of the transaction’s operations. Generally, transactions that are not serializable
are executed on a first-come, first-served basis by the DBMS. The scheduler’s main job is
to create a serializable schedule of a transaction’s operations, in which the interleaved
execution of the transactions (T1, T2, T3, etc.) yields the same results as if the transac-
tions were executed in serial order (one after another).

TABLE 10.10

INCONSISTENT RETRIEVALS

TIME TRANSACTION ACTION VALUE TOTAL
1 T1 Read PROD_QOH for PROD_CODE = '11QER/31' 8 8

2 T1 Read PROD_QOH for PROD_CODE = '13-Q2/P2' 32 40

3 T2 Read PROD_QOH for PROD_CODE = '1546-QQ2' 15

4 T2 PROD_QOH = 15 + 10

5 T2 Write PROD_QOH for PROD_CODE = '1546-QQ2' 25

6 T1 Read PROD_QOH for PROD_CODE = '1546-QQ2' 25 (After) 65

7 T1 Read PROD_QOH for PROD_CODE = '1558-QW1' 23 (Before) 88

8 T2 Read PROD_QOH for PROD_CODE = '1558-QW1' 23

9 T2 PROD_QOH = 23 − 10

10 T2 Write PROD_QOH for PROD_CODE = '1558-QW1' 13

11 T2 ***** COMMIT *****

12 T1 Read PROD_QOH for PROD_CODE = '2232-QTY' 8 96

13 T1 Read PROD_QOH for PROD_CODE = '2232-QWE' 6 102

scheduler
The DBMS component
that establishes
the order in which
concurrent transaction
operations are executed.
The scheduler interleaves
the execution of
database operations in
a specific sequence to
ensure serializability.

serializable schedule
In transaction
management, a
schedule of operations
in which the interleaved
execution of the
transactions yields the
same result as if they
were executed in serial
order.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 495

The scheduler also makes sure that the computer’s central processing unit (CPU) and
storage systems are used efficiently. If there were no way to schedule the execution of
transactions, all of them would be executed on a first-come, first-served basis. The prob-
lem with that approach is that processing time is wasted when the CPU waits for a READ
or WRITE operation to finish, thereby losing several CPU cycles. In short, first-come,
first-served scheduling tends to yield unacceptable response times within the multiuser
DBMS environment. Therefore, some other scheduling method is needed to improve the
efficiency of the overall system.

Additionally, the scheduler facilitates data isolation to ensure that two transactions do
not update the same data element at the same time. Database operations might require
READ and/or WRITE actions that produce conflicts. For example, Table 10.11 shows the
possible conflict scenarios when two transactions, T1 and T2, are executed concurrently
over the same data. Note that in Table 10.11, two operations are in conflict when they
access the same data and at least one of them is a WRITE operation.

Several methods have been proposed to schedule the execution of conflicting opera-
tions in concurrent transactions. These methods are classified as locking, time stamping,
and optimistic. Locking methods, discussed next, are used most frequently.

10-3 � Concurrency Control with Locking
Methods

Locking methods are one of the most common techniques used in concurrency control
because they facilitate the isolation of data items used in concurrently executing trans-
actions. A lock guarantees exclusive use of a data item to a current transaction. In other
words, transaction T2 does not have access to a data item that is currently being used
by transaction T1. A transaction acquires a lock prior to data access; the lock is released
(unlocked) when the transaction is completed so that another transaction can lock the
data item for its exclusive use. This series of locking actions assumes that concurrent
transactions might attempt to manipulate the same data item at the same time. The use
of locks based on the assumption that conflict between transactions is likely is usually
referred to as pessimistic locking.

Recall from Sections 10-1a and 10-1b that data consistency cannot be guaranteed
during a transaction; the database might be in a temporary inconsistent state when sev-
eral updates are executed. Therefore, locks are required to prevent another transaction
from reading inconsistent data.

Most multiuser DBMSs automatically initiate and enforce locking procedures. All
lock information is handled by a lock manager, which is responsible for assigning and
policing the locks used by the transactions.

lock
A device that guarantees
unique use of a data
item in a particular
transaction operation.
A transaction requires a
lock prior to data access;
the lock is released
after the operation’s
execution to enable
other transactions to
lock the data item for
their own use.

pessimistic locking
The use of locks based
on the assumption
that conflict between
transactions is likely.

lock manager
A DBMS component
that is responsible for
assigning and releasing
locks.

TABLE 10.11

READ/WRITE CONFLICT SCENARIOS: CONFLICTING DATABASE OPERATIONS MATRIX

TRANSACTIONS
T1 T2 RESULT

Operations Read Read No conflict

Read Write Conflict

Write Read Conflict

Write Write Conflict

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

496 Part 4 Advanced Database Concepts

10-3a  Lock Granularity
Lock granularity indicates the level of lock use. Locking can take place at the following
levels: database, table, page, row, or even field (attribute).

Database Level  In a database-level lock, the entire database is locked, thus prevent-
ing the use of any tables in the database by transaction T2 while transaction T1 is being
executed. This level of locking is good for batch processes, but it is unsuitable for
multiuser DBMSs. You can imagine how s-l-o-w data access would be if thousands of
transactions had to wait for the previous transaction to be completed before the next one
could reserve the entire database. Figure 10.3 illustrates the database-level lock; because
of it, transactions T1 and T2 cannot access the same database concurrently even when
they use different tables.

Table Level  In a table-level lock, the entire table is locked, preventing access to any
row by transaction T2 while transaction T1 is using the table. If a transaction requires
access to several tables, each table may be locked. However, two transactions can access
the same database as long as they access different tables.

Table-level locks, while less restrictive than database-level locks, cause traffic jams
when many transactions are waiting to access the same table. Such a condition is espe-
cially irksome if the lock forces a delay when different transactions require access to
different parts of the same table—that is, when the transactions would not interfere with
each other. Consequently, table-level locks are not suitable for multiuser DBMSs. Figure
10.4 illustrates the effect of a table-level lock. Note that transactions T1 and T2 cannot
access the same table even when they try to use different rows; T2 must wait until T1
unlocks the table.

lock granularity
The level of lock use.
Locking can take place
at the following levels:
database, table, page,
row, and field (attribute).

database-level lock
A type of lock that
restricts database access
to the owner of the lock
and allows only one user
at a time to access the
database. This lock works
for batch processes but
is unsuitable for online
multiuser DBMSs.

table-level lock
A locking scheme
that allows only one
transaction at a time
to access a table. A
table-level lock locks an
entire table, preventing
access to any row by
transaction T2 while
transaction T1 is using
the table.

FIGURE 10.3  DATABASE-LEVEL LOCKING SEQUENCE 

1

2

3

4

5

6

7

8

9

Time

Table A

Table B

Payroll Database

Transaction 1 (T1)
(Update Table A)

Lock database request

Locked OK

Unlocked

Transaction 2 (T2)
(Update Table B)

Lock database request

WAIT

LockedOK

Unlocked

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 497

Page Level  In a page-level lock, the DBMS locks an entire diskpage. A diskpage, or
page, is the equivalent of a diskblock, which can be described as a directly addressable
section of a disk. A page has a fixed size, such as 4K, 8K, or 16K. For example, if you want
to write only 73 bytes to a 4K page, the entire 4K page must be read from disk, updated in
memory, and written back to disk. A table can span several pages, and a page can contain
several rows of one or more tables. Page-level locks are currently the most frequently
used locking method for multiuser DBMSs. An example of a page-level lock is shown in
Figure 10.5. Note that T1 and T2 access the same table while locking different diskpages.
If T2 requires the use of a row located on a page that is locked by T1, T2 must wait until
T1 unlocks the page.

page-level lock
In this type of lock, the
database management
system locks an entire
diskpage, or section of
a disk. A diskpage can
contain data for one or
more rows and from one
or more tables.

diskpage (page)
In permanent storage,
the equivalent of a disk
block, which can be
described as a directly
addressable section of
a disk. A diskpage has a
fixed size, such as 4K, 8K,
or 16K.

FIGURE 10.4  AN EXAMPLE OF A TABLE-LEVEL LOCK 

1

2

3

4

5

6

7

8

9

Time Table ATransaction 1 (T1)
(Update row 5)

Lock Table A request

Locked OK

Unlocked (end of transaction 1)

Transaction 2 (T2)
(Update row 30)

Lock Table A request

WAIT

LockedOK

Unlocked
(end of transaction 2)

Payroll Database

FIGURE 10.5  AN EXAMPLE OF A PAGE-LEVEL LOCK 

Page 1

Page 2

1
2
3
4
5
6
7

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock page 1 request

Locked OK

Unlock page 1
(end of transaction)

Transaction 2 (T2)
(Update rows 5 and 2)

Lock page 2 request

Lock page 1 request

OK

Unlock pages 1 and 2
(end of transaction)

1

2

3

4

5

6

Locked

Row number

Payroll Database

OK

Locked

WAIT

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

498 Part 4 Advanced Database Concepts

Row Level  A row-level lock is much less restrictive than the locks discussed earlier.
The DBMS allows concurrent transactions to access different rows of the same table even
when the rows are located on the same page. Although the row-level locking approach
improves the availability of data, its management requires high overhead because a
lock exists for each row in a table of the database involved in a conflicting transaction.
Modern DBMSs automatically escalate a lock from a row level to a page level when the
application session requests multiple locks on the same page. Figure 10.6 illustrates the
use of a row-level lock.

Note in Figure 10.6 that both transactions can execute concurrently, even when the
requested rows are on the same page. T2 must wait only if it requests the same row as T1.

Field Level  The field-level lock allows concurrent transactions to access the same row
as long as they require the use of different fields (attributes) within that row. Although
field-level locking clearly yields the most flexible multiuser data access, it is rarely imple-
mented in a DBMS because it requires an extremely high level of computer overhead and
because the row-level lock is much more useful in practice.

10-3b  Lock Types
Regardless of the level of granularity of the lock, the DBMS may use different lock types
or modes: binary or shared/exclusive.

Binary  A binary lock has only two states: locked (1) or unlocked (0). If an object such
as a database, table, page, or row is locked by a transaction, no other transaction can use
that object. If an object is unlocked, any transaction can lock the object for its use. Every
database operation requires that the affected object be locked. As a rule, a transaction
must unlock the object after its termination. Therefore, every transaction requires a lock
and unlock operation for each accessed data item. Such operations are automatically
managed and scheduled by the DBMS; the user does not lock or unlock data items.
(Every DBMS has a default-locking mechanism. If the end user wants to override the
default settings, the LOCK TABLE command and other SQL commands are available for
that purpose.)

The binary locking technique is illustrated in Table 10.12, using the lost update prob-
lem you encountered in Table 10.4. Note that the lock and unlock features eliminate

FIGURE 10.6  AN EXAMPLE OF A ROW-LEVEL LOCK 

1

2

3

4

5

6

Time
Table A

Transaction 1 (T1)
(Update row 1)

Lock row 1 request

OK

Transaction 2 (T2)
(Update row 2)

1

2

3

4

5

6

Lock row 2 request

Row number

Locked

Unlock row 1
(end of transaction)

Payroll Database

OK
Locked

Unlock row 2
(end of transaction)

Page 1

Page 2

row-level lock
A less restrictive
database lock in which
the DBMS allows
concurrent transactions
to access different rows
of the same table, even
when the rows are on
the same page.

field-level lock
A lock that allows
concurrent transactions
to access the same row
as long as they require
the use of different fields
(attributes) within that
row. This type of lock
yields the most flexible
multiuser data access
but requires a high level
of computer overhead.

binary lock
A lock that has only
two states: locked (1)
and unlocked (0). If a
data item is locked by
a transaction, no other
transaction can use that
data item.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 499

the lost update problem because the lock is not released until the WRITE statement
is completed. Therefore, a PROD_QOH value cannot be used until it has been prop-
erly updated. However, binary locks are now considered too restrictive to yield opti-
mal concurrency conditions. For example, the DBMS will not allow two transactions to
read the same database object even though neither transaction updates the database and
therefore no concurrency problems can occur. Remember from Table 10.11 that concur-
rency conflicts occur only when two transactions execute concurrently and one of them
updates the database.

Shared/Exclusive  An exclusive lock exists when access is reserved specifi-
cally for the transaction that locked the object. The exclusive lock must be used
when the potential for conflict exists (see Table 10.11). A shared lock exists when
concurrent transactions are granted read access on the basis of a common lock.
A shared lock produces no conflict as long as all the concurrent transactions are
read-only.

A shared lock is issued when a transaction wants to read data from the database and
no exclusive lock is held on that data item. An exclusive lock is issued when a transaction
wants to update (write) a data item and no locks are currently held on that data item by
any other transaction. Using the shared/exclusive locking concept, a lock can have three
states: unlocked, shared (read), and exclusive (write).

As shown in Table 10.11, two transactions conflict only when at least one is a write
transaction. Because the two read transactions can be safely executed at once, shared
locks allow several read transactions to read the same data item concurrently. For exam-
ple, if transaction T1 has a shared lock on data item X and transaction T2 wants to read
data item X, T2 may also obtain a shared lock on data item X.

If transaction T2 updates data item X, an exclusive lock is required by T2 over data
item X. The exclusive lock is granted if and only if no other locks are held on the data
item (this condition is known as the mutual exclusive rule: only one transaction at a
time can own an exclusive lock on an object.) Therefore, if a shared (or exclusive) lock
is already held on data item X by transaction T1, an exclusive lock cannot be granted
to transaction T2, and T2 must wait to begin until T1 commits. In other words, a
shared lock will always block an exclusive (write) lock; hence, decreasing transaction
concurrency.

exclusive lock
An exclusive lock
is issued when a
transaction requests
permission to update
a data item and no
locks are held on that
data item by any other
transaction. An exclusive
lock does not allow
other transactions to
access the database.

shared lock
A lock that is issued
when a transaction
requests permission
to read data from
a database and no
exclusive locks are held
on the data by another
transaction. A shared
lock allows other read-
only transactions to
access the database.

mutual exclusive
rule
A condition in which
only one transaction
at a time can own an
exclusive lock on the
same object.

TABLE 10.12

AN EXAMPLE OF A BINARY LOCK

TIME TRANSACTION STEP STORED VALUE
1 T1 Lock PRODUCT

2 T1 Read PROD_QOH 15

3 T1 PROD_QOH = 15 + 10

4 T1 Write PROD_QOH 25

5 T1 Unlock PRODUCT

6 T2 Lock PRODUCT

7 T2 Read PROD_QOH 23

8 T2 PROD_QOH = 23 − 10

9 T2 Write PROD_QOH 13

10 T2 Unlock PRODUCT

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

500 Part 4 Advanced Database Concepts

Although the use of shared locks renders data access more efficient, a shared/exclu-
sive lock schema increases the lock manager’s overhead for several reasons:
•	 The type of lock held must be known before a lock can be granted.
•	 Three lock operations exist: READ_LOCK to check the type of lock, WRITE_LOCK

to issue the lock, and UNLOCK to release the lock.
•	 The schema has been enhanced to allow a lock upgrade from shared to exclusive and

a lock downgrade from exclusive to shared.
Although locks prevent serious data inconsistencies, they can lead to two major

problems:
•	 The resulting transaction schedule might not be serializable.
•	 The schedule might create deadlocks. A deadlock occurs when two transactions wait

indefinitely for each other to unlock data. A database deadlock, which is similar to
traffic gridlock in a big city, is caused when two or more transactions wait for each
other to unlock data.
Fortunately, both problems can be managed: serializability is attained through a locking

protocol known as two-phase locking, and deadlocks can be managed by using deadlock
detection and prevention techniques. Those techniques are examined in the next two sections.

10-3c  Two-Phase Locking to Ensure Serializability
Two-phase locking (2PL) defines how transactions acquire and relinquish locks. Two-phase
locking guarantees serializability, but it does not prevent deadlocks. The two phases are:
1.	 A growing phase, in which a transaction acquires all required locks without unlock-

ing any data. Once all locks have been acquired, the transaction is in its locked point.

2.	 A shrinking phase, in which a transaction releases all locks and cannot obtain a new lock.

The two-phase locking protocol is governed by the following rules:
•	 Two transactions cannot have conflicting locks.
•	 No unlock operation can precede a lock operation in the same transaction.
•	 No data is affected until all locks are obtained—that is, until the transaction is in its

locked point.
Figure 10.7 depicts the two-phase locking protocol.
In this example, the transaction first acquires the two locks it needs. When it has the

two locks, it reaches its locked point. Next, the data is modified to conform to the trans-
action’s requirements. Finally, the transaction is completed as it releases all of the locks it
acquired in the first phase. Two-phase locking increases the transaction processing cost
and might cause additional undesirable effects, such as deadlocks.

10-3d  Deadlocks
A deadlock occurs when two transactions wait indefinitely for each other to unlock data. For
example, a deadlock occurs when two transactions, T1 and T2, exist in the following mode:

T1 = access data items X and Y

T2 = access data items Y and X

If T1 has not unlocked data item Y, T2 cannot begin; if T2 has not unlocked data item
X, T1 cannot continue. Consequently, T1 and T2 each wait for the other to unlock the

deadlock
A condition in which
two or more transactions
wait indefinitely for the
other to release the lock
on a previously locked
data item. Also called
deadly embrace.

two-phase locking
(2PL)
A set of rules that
governs how
transactions acquire
and relinquish locks.
Two-phase locking
guarantees serializability,
but it does not prevent
deadlocks. The two-
phase locking protocol
is divided into two
phases: (1) A growing
phase occurs when the
transaction acquires the
locks it needs without
unlocking any existing
data locks. Once all locks
have been acquired, the
transaction is in its locked
point. (2) A shrinking
phase occurs when the
transaction releases all
locks and cannot obtain
a new lock.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 501

required data item. Such a deadlock is also known as a deadly embrace. Table 10.13
demonstrates how a deadlock condition is created.

The preceding example used only two concurrent transactions to demonstrate a dead-
lock condition. In a real-world DBMS, many more transactions can be executed simulta-
neously, thereby increasing the probability of generating deadlocks. Note that deadlocks
are possible only when one of the transactions wants to obtain an exclusive lock on a data
item; no deadlock condition can exist among shared locks.

TABLE 10.13

HOW A DEADLOCK CONDITION IS CREATED

TIME TRANSACTION REPLY LOCK STATUS
DATA X DATA Y

0 Unlocked Unlocked

1 T1:LOCK(X) OK Locked Unlocked

2 T2:LOCK(Y) OK Locked Locked

3 T1:LOCK(Y) WAIT Locked Locked

4 T2:LOCK(X) WAIT Locked Locked

5 T1:LOCK(Y) WAIT Locked Locked

6 T2:LOCK(X) WAIT Locked Locked

7 T1:LOCK(Y) WAIT Locked Locked

8 T2:LOCK(X) WAIT Locked Locked

9 T1:LOCK(Y) WAIT Locked Locked

...

...

...

...

deadly embrace
See deadlock.

FIGURE 10.7  TWO-PHASE LOCKING PROTOCOL 

Locked
point

Acquire
lock

Acquire
lock

Release
lock

Release
lock

Time

Start Operations End

Growing phase
Locked
phase Shrinking phase

1 2 3 4 5 6 7 8

D
e
a
d
l
o
c
k

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

502 Part 4 Advanced Database Concepts

The three basic techniques to control deadlocks are:
•	 Deadlock prevention. A transaction requesting a new lock is aborted when there is

the possibility that a deadlock can occur. If the transaction is aborted, all changes
made by this transaction are rolled back and all locks obtained by the transaction
are released. The transaction is then rescheduled for execution. Deadlock prevention
works because it avoids the conditions that lead to deadlocking.

•	 Deadlock detection. The DBMS periodically tests the database for deadlocks. If a dead-
lock is found, the “victim” transaction is aborted (rolled back and restarted) and the
other transaction continues.

•	 Deadlock avoidance. The transaction must obtain all of the locks it needs before it
can be executed. This technique avoids the rolling back of conflicting transactions by
requiring that locks be obtained in succession. However, the serial lock assignment
required in deadlock avoidance increases action response times.
The choice of which deadlock control method to use depends on the database envi-

ronment. For example, if the probability of deadlocks is low, deadlock detection is rec-
ommended. However, if the probability of deadlocks is high, deadlock prevention is
recommended. If response time is not high on the system’s priority list, deadlock avoid-
ance might be employed. All current DBMSs support deadlock detection in transac-
tional databases, while some DBMSs use a blend of prevention and avoidance techniques
for other types of data, such as data warehouses or XML data.

10-4 � Concurrency Control with Time Stamping
Methods

The time stamping approach to scheduling concurrent transactions assigns a global,
unique time stamp to each transaction. The time stamp value produces an explicit order
in which transactions are submitted to the DBMS. Time stamps must have two proper-
ties: uniqueness and monotonicity. Uniqueness ensures that no equal time stamp values
can exist, and monotonicity1 ensures that time stamp values always increase.

All database operations (read and write) within the same transaction must have
the same time stamp. The DBMS executes conflicting operations in time stamp order,
thereby ensuring serializability of the transactions. If two transactions conflict, one is
stopped, rolled back, rescheduled, and assigned a new time stamp value.

The disadvantage of the time stamping approach is that each value stored in the data-
base requires two additional time stamp fields: one for the last time the field was read and
one for the last update. Time stamping thus increases memory needs and the database’s
processing overhead. Time stamping demands a lot of system resources because many
transactions might have to be stopped, rescheduled, and restamped.

10-4a  Wait/Die and Wound/Wait Schemes
Time stamping methods are used to manage concurrent transaction execution. In this
section, you will learn about two schemes used to decide which transaction is rolled back
and which continues executing: the wait/die scheme and the wound/wait scheme.2 An

time stamping
In transaction
management, a
technique used in
scheduling concurrent
transactions that
assigns a global unique
time stamp to each
transaction.

uniqueness
In concurrency control,
a property of time
stamping that ensures
no equal time stamp
values can exist.

monotonicity
A quality that ensures
that time stamp
values always increase.
(The time stamping
approach to scheduling
concurrent transactions
assigns a global, unique
time stamp to each
transaction. The time
stamp value produces
an explicit order in
which transactions are
submitted to the DBMS.)

1 The term monotonicity is part of the standard concurrency control vocabulary. The authors’ first introduction
to this term and its proper use was in an article written by W. H. Kohler, “A survey of techniques for synchro-
nization and recovery in decentralized computer systems,” Computer Surveys 3(2), June 1981, pp. 149–283.
2 The procedure was first described by R. E. Stearnes and P. M. Lewis II in “System-level concurrency control
for distributed database systems,” ACM Transactions on Database Systems, No. 2, June 1978, pp. 178–198.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 503

example illustrates the difference. Assume that you have two conflicting transactions: T1
and T2, each with a unique time stamp. Suppose that T1 has a time stamp of 11548789
and T2 has a time stamp of 19562545. You can deduce from the time stamps that T1
is the older transaction (the lower time stamp value), and T2 is the newer transaction.
Given that scenario, the four possible outcomes are shown in Table 10.14.

Using the wait/die scheme:
•	 If the transaction requesting the lock is the older of the two transactions, it will wait

until the other transaction is completed and the locks are released.
•	 If the transaction requesting the lock is the younger of the two transactions, it will die

(roll back) and is rescheduled using the same time stamp.
In short, in the wait/die scheme, the older transaction waits for the younger one to

complete and release its locks.
In the wound/wait scheme:

•	 If the transaction requesting the lock is the older of the two transactions, it will
preempt (wound) the younger transaction by rolling it back. T1 preempts T2 when
T1 rolls back T2. The younger, preempted transaction is rescheduled using the same
time stamp.

•	 If the transaction requesting the lock is the younger of the two transactions, it will
wait until the other transaction is completed and the locks are released.
In short, in the wound/wait scheme, the older transaction rolls back the younger

transaction and reschedules it.
In both schemes, one of the transactions waits for the other transaction to finish and

release the locks. However, in many cases, a transaction requests multiple locks. How
long does a transaction have to wait for each lock request? Obviously, that scenario can
cause some transactions to wait indefinitely, causing a deadlock. To prevent a deadlock,
each lock request has an associated time-out value. If the lock is not granted before the
time-out expires, the transaction is rolled back.

10-5 � Concurrency Control with
Optimistic Methods

The optimistic approach is based on the assumption that the majority of database
operations do not conflict. The optimistic approach requires neither locking nor time
stamping techniques. Instead, a transaction is executed without restrictions until it is

wait/die
A concurrency control
scheme in which an
older transaction must
wait for the younger
transaction to complete
and release the locks
before requesting the
locks itself. Otherwise,
the newer transaction
dies and is rescheduled.

wound/wait
A concurrency control
scheme in which
an older transaction
can request the lock,
preempt the younger
transaction, and
reschedule it. Otherwise,
the newer transaction
waits until the older
transaction finishes.

optimistic approach
In transaction
management, a
concurrency control
technique based on the
assumption that most
database operations do
not conflict.

TABLE 10.14

WAIT/DIE AND WOUND/WAIT CONCURRENCY CONTROL SCHEMES

TRANSACTION
REQUESTING LOCK

TRANSACTION
OWNING LOCK

WAIT/DIE SCHEME WOUND/WAIT SCHEME

T1 (11548789) T2 (19562545) •	 T1 waits until T2 is completed and
T2 releases its locks.

•	 T1 preempts (rolls back) T2.

•	 T2 is rescheduled using the
same time stamp.

T2 (19562545) T1 (11548789) •	 T2 dies (rolls back).

•	 T2 is rescheduled using the same
time stamp.

•	 T2 waits until T1 is completed
and T1 releases its locks.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

504 Part 4 Advanced Database Concepts

committed. Using an optimistic approach, each transaction moves through two or three
phases, referred to as read, validation, and write.3

•	 During the read phase, the transaction reads the database, executes the needed com-
putations, and makes the updates to a private copy of the database values. All update
operations of the transaction are recorded in a temporary update file, which is not
accessed by the remaining transactions.

•	 During the validation phase, the transaction is validated to ensure that the changes
made will not affect the integrity and consistency of the database. If the validation test
is positive, the transaction goes to the write phase. If the validation test is negative, the
transaction is restarted and the changes are discarded.

•	 During the write phase, the changes are permanently applied to the database.
The optimistic approach is acceptable for most read or query database systems that

require few update transactions. In a heavily used DBMS environment, the manage-
ment of deadlocks—their prevention and detection—constitutes an important DBMS
function. The DBMS will use one or more of the techniques discussed here, as well as
variations on those techniques. To further understand how transaction management is
implemented in a database, it is important that you learn about the transaction isolation
levels as defined in ANSI SQL 1992 standard.

10-6  ANSI Levels of Transaction Isolation
The ANSI SQL standard (1992) defines transaction management based on transaction
isolation levels. Transaction isolation levels refer to the degree to which transaction data
is “protected or isolated” from other concurrent transactions. The isolation levels are
described based on what data other transactions can see (read) during execution. More
precisely, the transaction isolation levels are described by the type of “reads” that a trans-
action allows or not. The types of read operations are:
•	 Dirty read: a transaction can read data that is not yet committed.
•	 Nonrepeatable read: a transaction reads a given row at time t1, and then it reads

the same row at time t2, yielding different results. The original row may have been
updated or deleted.

•	 Phantom read: a transaction executes a query at time t1, and then it runs the same
query at time t2, yielding additional rows that satisfy the query.
Based on the above operations, ANSI defined four levels of transaction isolation:

Read Uncommitted, Read Committed, Repeatable Read, and Serializable. Table 10.15
shows the four ANSI transaction isolation levels. The table also shows an additional level
of isolation provided by Oracle and MS SQL Server databases.

Read Uncommitted will read uncommitted data from other transactions. At this iso-
lation level, the database does not place any locks on the data, which increases transaction
performance but at the cost of data consistency. Read Committed forces transactions
to read only committed data. This is the default mode of operation for most databases
(including Oracle and SQL Server). At this level, the database will use exclusive locks
on data, causing other transactions to wait until the original transaction commits. The
Repeatable Read isolation level ensures that queries return consistent results. This type
of isolation level uses shared locks to ensure other transactions do not update a row after

dirty read
In transaction
management, when
a transaction reads
data that is not yet
committed.

nonrepeatable read
In transaction
management, when
a transaction reads a
given row at time t1,
then reads the same
row at time t2, yielding
different results because
the original row may
have been updated or
deleted.

phantom read
In transaction
management, when a
transaction executes a
query at time t1, then
runs the same query
at time t2, yielding
additional rows that
satisfy the query.

Read Uncommitted
An ANSI SQL transaction
isolation level that
allows transactions to
read uncommitted data
from other transactions,
and which allows
nonrepeatable reads and
phantom reads. The least
restrictive level defined
by ANSI SQL.

Read Committed
An ANSI SQL transaction
isolation level that allows
transactions to read
only committed data.
This is the default mode
of operations for most
databases.

Repeatable Read
An ANSI SQL transaction
isolation level that uses
shared locks to ensure
that other transactions
do not update a row
after the original query
updates it. However,
phantom reads are
allowed.

3 The optimistic approach to concurrency control is described in an article by H. T. King and J. T. Robinson,
“Optimistic methods for concurrency control,” ACM Transactions on Database Systems 6(2), June 1981,
pp. 213–226. Even the most current software is built on conceptual standards that were developed more than
two decades ago.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 505

the original query reads it. However, new rows are read (phantom read) as these rows
did not exist when the first query ran. The Serializable isolation level is the most restric-
tive level defined by the ANSI SQL standard. However, it is important to note that even
with a Serializable isolation level, deadlocks are always possible. Most databases use a
deadlock detection approach to transaction management, and, therefore, they will detect
“deadlocks” during the transaction validation phase and reschedule the transaction.

The reason for the different levels of isolation is to increase transaction concurrency.
The isolation levels go from the least restrictive (Read Uncommitted) to the more restric-
tive (Serializable). The higher the isolation level the more locks (shared and exclusive)
are required to improve data consistency, at the expense of transaction concurrency per-
formance. The isolation level of a transaction is defined in the transaction statement, for
example using general ANSI SQL syntax:

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED
… SQL STATEMENTS….
COMMIT TRANSACTION;

Oracle and MS SQL Server use the SET TRANSACTION ISOLATION LEVEL state-
ment to define the level of isolation. SQL Server supports all four ANSI isolation levels.
Oracle by default provides consistent statement-level reads to ensure Read Committed
and Repeatable Read transactions. MySQL uses START TRANSACTION WITH CON-
SISTENT SNAPSHOT to provide transactions with consistent reads; that is, the transac-
tion can only see the committed data at the time the transaction started.

As you can see from the previous discussion, transaction management is a complex
subject and databases make use of various techniques to manage the concurrent exe-
cution of transactions. However, it may be necessary sometimes to employ database
recovery techniques to restore the database to a consistent state.

Serializable
An ANSI SQL transaction
isolation level that does
not allow dirty reads,
nonrepeatable reads,
or phantom reads; the
most restrictive level
defined by the ANSI SQL
standard.

TABLE 10.15

TRANSACTION ISOLATION LEVELS

ISOLATION
LEVEL

ALLOWED COMMENT
DIRTY
READ

NONREPEATABLE
READ

PHANTOM
READ

Less restrictive

More restrictive

Read Uncommitted Y Y Y The transaction reads
uncommitted data, allows
nonrepeatable reads, and
phantom reads.

Read Committed N Y Y Does not allow uncommitted
data reads but allows
nonrepeatable reads and
phantom reads.

Repeatable Read N N Y Only allows phantom reads.

Serializable N N N Does not allow dirty reads,
nonrepeatable reads, or
phantom reads.

Oracle / SQL
Server Only

Read Only /
Snapshot

N N N Supported by Oracle and SQL
Server. The transaction can
only see the changes that were
committed at the time the
transaction started.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

506 Part 4 Advanced Database Concepts

10-7  Database Recovery Management
Database recovery restores a database from a given state (usually inconsistent) to a previ-
ously consistent state. Recovery techniques are based on the atomic transaction property:
all portions of the transaction must be treated as a single, logical unit of work in which all
operations are applied and completed to produce a consistent database. If a transaction oper-
ation cannot be completed for some reason, the transaction must be aborted and any changes
to the database must be rolled back (undone). In short, transaction recovery reverses all of the
changes that the transaction made to the database before the transaction was aborted.

Although this chapter has emphasized the recovery of transactions, recovery tech-
niques also apply to the database and to the system after some type of critical error has
occurred. Critical events can cause a database to stop working and compromise the
integrity of the data. Examples of critical events are:
•	 Hardware/software failures. A failure of this type could be a hard disk media failure,

a bad capacitor on a motherboard, or a failing memory bank. Other causes of errors
under this category include application program or operating system errors that cause
data to be overwritten, deleted, or lost. Some database administrators argue that this
is one of the most common sources of database problems.

•	 Human-caused incidents. This type of event can be categorized as unintentional or
intentional.

–– An unintentional failure is caused by a careless end user. Such errors include
deleting the wrong rows from a table, pressing the wrong key on the keyboard, or
shutting down the main database server by accident.

–– Intentional events are of a more severe nature and normally indicate that the company
data is at serious risk. Under this category are security threats caused by hackers trying
to gain unauthorized access to data resources and virus attacks caused by disgruntled
employees trying to compromise the database operation and damage the company.

•	 Natural disasters. This category includes fires, earthquakes, floods, and power failures.
Whatever the cause, a critical error can render the database into an inconsistent state.

The following section introduces the various techniques used to recover the database
from an inconsistent state to a consistent state.

10-7a  Transaction Recovery
In Section 10-1d, you learned about the transaction log and how it contains data for
database recovery purposes. Database transaction recovery uses data in the transaction
log to recover a database from an inconsistent state to a consistent state.

Before continuing, examine four important concepts that affect the recovery process:
•	 The write-ahead-log protocol ensures that transaction logs are always written before

any database data is actually updated. This protocol ensures that, in case of a failure, the
database can later be recovered to a consistent state using the data in the transaction log.

•	 Redundant transaction logs (several copies of the transaction log) ensure that a
physical disk failure will not impair the DBMS’s ability to recover data.

•	 Database buffers are temporary storage areas in primary memory used to speed up
disk operations. To improve processing time, the DBMS software reads the data from
the physical disk and stores a copy of it on a “buffer” in primary memory. When a
transaction updates data, it actually updates the copy of the data in the buffer because
that process is much faster than accessing the physical disk every time. Later, all buf-
fers that contain updated data are written to a physical disk during a single operation,
thereby saving significant processing time.

database recovery
The process of restoring
a database to a previous
consistent state.

atomic transaction
property
A property that requires
all parts of a transaction
to be treated as a single,
logical unit of work in
which all operations
must be completed
(committed) to produce
a consistent database.

write-ahead-log
protocol
In concurrency control,
a process that ensures
transaction logs are
written to permanent
storage before any
database data is
actually updated. Also
called a write-ahead
protocol.

redundant
transaction logs
Multiple copies of the
transaction log kept by
database management
systems to ensure that
the physical failure of a
disk will not impair the
DBMS’s ability to recover
data.

buffer
Temporary storage area
in primary memory
used to speed up disk
operations.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 507

•	 Database checkpoints are operations in which the DBMS writes all of its updated
buffers in memory (also known as dirty buffers) to disk. While this is happening,
the DBMS does not execute any other requests. A checkpoint operation is also reg-
istered in the transaction log. As a result of this operation, the physical database and
the transaction log will be in sync. This synchronization is required because update
operations update the copy of the data in the buffers and not in the physical database.
Checkpoints are automatically and periodically executed by the DBMS according to
certain operational parameters (such a high watermark for the transaction log size or
volume of outstanding transactions) but can also be executed explicitly (as part of a
database transaction statement) or implicitly (as part of a database backup operation).
Of course, checkpoints that are too frequent would affect transaction performance;
checkpoints that are too infrequent would affect database recovery performance. In
any case, checkpoints serve a very practical function. As you will see next, check-
points also play an important role in transaction recovery.
The database recovery process involves bringing the database to a consistent state

after a failure. Transaction recovery procedures generally make use of deferred-write and
write-through techniques.

When the recovery procedure uses a deferred-write technique (also called a
deferred update), the transaction operations do not immediately update the physical
database. Instead, only the transaction log is updated. The database is physically updated
only with data from committed transactions, using information from the transaction log.
If the transaction aborts before it reaches its commit point, no changes (no ROLLBACK
or undo) need to be made to the database because it was never updated. The recovery
process for all started and committed transactions (before the failure) follows these steps:
1.	 Identify the last checkpoint in the transaction log. This is the last time transaction

data was physically saved to disk.

2.	 For a transaction that started and was committed before the last checkpoint, nothing
needs to be done because the data is already saved.

3.	 For a transaction that performed a commit operation after the last checkpoint,
the DBMS uses the transaction log records to redo the transaction and update the
database, using the “after” values in the transaction log. The changes are made in
ascending order, from oldest to newest.

4.	 For any transaction that had a ROLLBACK operation after the last checkpoint or
that was left active (with neither a COMMIT nor a ROLLBACK) before the failure
occurred, nothing needs to be done because the database was never updated.
When the recovery procedure uses a write-through technique (also called an

immediate update), the database is immediately updated by transaction operations during
the transaction’s execution, even before the transaction reaches its commit point. If the trans-
action aborts before it reaches its commit point, a ROLLBACK or undo operation needs to
be done to restore the database to a consistent state. In that case, the ROLLBACK operation
will use the transaction log “before” values. The recovery process follows these steps:
1.	 Identify the last checkpoint in the transaction log. This is the last time transaction

data was physically saved to disk.

2.	 For a transaction that started and was committed before the last checkpoint, nothing
needs to be done because the data is already saved.

3.	 For a transaction that was committed after the last checkpoint, the DBMS
re-does the transaction, using the “after” values of the transaction log. Changes are
applied in ascending order, from oldest to newest.

checkpoint
In transaction
management, an
operation in which the
database management
system writes all of its
updated buffers to disk.

deferred write
technique
See deferred update.

deferred update
In transaction
management, a
condition in which
transaction operations
do not immediately
update a physical
database. Also called
deferred write technique.

write-through
technique
In concurrency control,
a process that ensures a
database is immediately
updated by operations
during the transaction’s
execution, even before
the transaction reaches
its commit point. Also
called immediate update.

immediate update
See write-through
technique.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

508 Part 4 Advanced Database Concepts

4.	 For any transaction that had a ROLLBACK operation after the last checkpoint or
that was left active (with neither a COMMIT nor a ROLLBACK) before the failure
occurred, the DBMS uses the transaction log records to ROLLBACK or undo the
operations, using the “before” values in the transaction log. Changes are applied in
reverse order, from newest to oldest.
Use the transaction log in Table 10.16 to trace a simple database recovery process.

To make sure you understand the recovery process, the simple transaction log includes
three transactions and one checkpoint. This transaction log includes the transaction
components used earlier in the chapter, so you should already be familiar with the basic
process. Given the transaction, the transaction log has the following characteristics:
•	 Transaction 101 consists of two UPDATE statements that reduce the quantity on

hand for product 54778-2T and increase the customer balance for customer 10011
for a credit sale of two units of product 54778-2T.

•	 Transaction 106 is the same credit sales event you saw in Section 10-1a. This transac-
tion represents the credit sale of one unit of product 89-WRE-Q to customer 10016
for $277.55. This transaction consists of five SQL DML statements: three INSERT
statements and two UPDATE statements.

•	 Transaction 155 represents a simple inventory update. This transaction consists of
one UPDATE statement that increases the quantity on hand of product 2232/QWE
from 6 units to 26 units.

•	 A database checkpoint writes all updated database buffers to disk. The checkpoint
event writes only the changes for all previously committed transactions. In this case,
the checkpoint applies all changes made by transaction 101 to the database data files.
Using Table 10.16, you can now trace the database recovery process for a DBMS using

the deferred update method as follows:
1.	 Identify the last checkpoint—in this case, TRL ID 423. This was the last time database

buffers were physically written to disk.

2.	 Note that transaction 101 started and finished before the last checkpoint. Therefore,
all changes were already written to disk, and no additional action needs to be taken.

3.	 For each transaction committed after the last checkpoint (TRL ID 423), the DBMS
will use the transaction log data to write the changes to disk, using the “after” values.
For example, for transaction 106:

a.	 Find COMMIT (TRL ID 457).
b.	 Use the previous pointer values to locate the start of the transaction (TRL

ID 397).
c.	 Use the next pointer values to locate each DML statement, and apply the

changes to disk using the “after” values. (Start with TRL ID 405, then 415,
419, 427, and 431.) Remember that TRL ID 457 was the COMMIT state-
ment for this transaction.

d.	Repeat the process for transaction 155.

4.	 Any other transactions will be ignored. Therefore, for transactions that ended
with ROLLBACK or that were left active (those that do not end with a COMMIT or
ROLLBACK), nothing is done because no changes were written to disk.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 509

TA
BL

E
10

.1
6

A
 T

R
A

N
SA

C
TI

O
N

 L
O

G
 F

O
R

TR
A

N
SA

C
TI

O
N

 R
EC

O
V

ER
Y

EX
A

M
PL

ES

TR
L

ID
TR

X
N

U
M

PR
EV

PT

R
N

EX
T

PT
R

O
PE

RA
TI

O
N

TA
BL

E
RO

W
 ID

AT
TR

IB
U

TE
BE

FO
RE

VA

LU
E

A
FT

ER
 V

A
LU

E

34
1

10
1

N
ul

l
35

2
ST

A
RT

**
**

St
ar

t T
ra

ns
ac

tio
n

35
2

10
1

34
1

36
3

U
PD

AT
E

PR
O

D
U

C
T

54
77

8-
2T

PR
O

D
_Q

O
H

45
43

36
3

10
1

35
2

36
5

U
PD

AT
E

CU
ST

O
M

ER
10

01
1

CU
ST

_B
A

LA
N

CE
61

5.
73

67
5.

62

36
5

10
1

36
3

N
ul

l
CO

M
M

IT
**

**
 E

nd
 o

f T
ra

ns
ac

tio
n

39
7

10
6

N
ul

l
40

5
ST

A
RT

**
**

St
ar

t T
ra

ns
ac

tio
n

40
5

10
6

39
7

41
5

IN
SE

RT
IN

VO
IC

E
10

09
10

09
,1

00
16

, …

41
5

10
6

40
5

41
9

IN
SE

RT
LI

N
E

10
09

,1
10

09
,1

, 8
9-

W
RE

-Q
,1

, …

41
9

10
6

41
5

42
7

U
PD

AT
E

PR
O

D
U

C
T

89
-W

RE
-Q

PR
O

D
_Q

O
H

12
11

42
3

CH
EC

KP
O

IN
T

42
7

10
6

41
9

43
1

U
PD

AT
E

CU
ST

O
M

ER
10

01
6

CU
ST

_B
A

LA
N

CE
0.

00
27

7.
55

43
1

10
6

42
7

45
7

IN
SE

RT
AC

C
T_

TR
A

N
SA

C
TI

O
N

10
00

7
10

07
,1

8-
JA

N
-2

01
6,

 …

45
7

10
6

43
1

N
ul

l
CO

M
M

IT
**

**
 E

nd
 o

f T
ra

ns
ac

tio
n

52
1

15
5

N
ul

l
52

5
ST

A
RT

**
**

St
ar

t T
ra

ns
ac

tio
n

52
5

15
5

52
1

52
8

U
PD

AT
E

PR
O

D
U

C
T

22
32

/Q
W

E
PR

O
D

_Q
O

H
6

26

52
8

15
5

52
5

N
ul

l
CO

M
M

IT
**

**
 E

nd
 o

f T
ra

ns
ac

tio
n

*
*

*
*

*
C

*R
*A

*
S*

 H
 *

 *
 *

 *

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

510 Part 4 Advanced Database Concepts

Summary

•	 A transaction is a sequence of database operations that access the database. A trans-
action is a logical unit of work; that is, all parts are executed or the transaction is
aborted. A transaction takes a database from one consistent state to another. A consis-
tent database state is one in which all data integrity constraints are satisfied.

•	 Transactions have four main properties: atomicity, consistency, isolation, and dura-
bility. Atomicity means that all parts of the transaction must be executed; otherwise,
the transaction is aborted. Consistency means that the database’s consistent state is
maintained. Isolation means that data used by one transaction cannot be accessed by
another transaction until the first one is completed. Durability means that changes
made by a transaction cannot be rolled back once the transaction is committed. In
addition, transaction schedules have the property of serializability—the result of the
concurrent execution of transactions is the same as that of the transactions being
executed in serial order.

•	 SQL provides support for transactions through the use of two statements: COMMIT,
which saves changes to disk, and ROLLBACK, which restores the previous database
state. SQL transactions are formed by several SQL statements or database requests.
Each database request originates several I/O database operations. The transaction log
keeps track of all transactions that modify the database. The information stored in the
transaction log is used for recovery (ROLLBACK) purposes.

•	 Concurrency control coordinates the simultaneous execution of transactions. The
concurrent execution of transactions can result in three main problems: lost updates,
uncommitted data, and inconsistent retrievals. The scheduler is responsible for estab-
lishing the order in which the concurrent transaction operations are executed. The
transaction execution order is critical and ensures database integrity in multiuser
database systems. The scheduler uses locking, time stamping, and optimistic methods
to ensure the serializability of transactions.

•	 A lock guarantees unique access to a data item by a transaction. The lock prevents one
transaction from using the data item while another transaction is using it. There are
several levels of locks: database, table, page, row, and field. Two types of locks can be
used in database systems: binary locks and shared/exclusive locks. A binary lock can
have only two states: locked (1) or unlocked (0). A shared lock is used when a transac-
tion wants to read data from a database and no other transaction is updating the same
data. Several shared or “read” locks can exist for a particular item. An exclusive lock is
issued when a transaction wants to update (write to) the database and no other locks
(shared or exclusive) are held on the data.

•	 Serializability of schedules is guaranteed through the use of two-phase locking. The
two-phase locking schema has a growing phase, in which the transaction acquires
all of the locks that it needs without unlocking any data, and a shrinking phase, in
which the transaction releases all of the locks without acquiring new locks. When two
or more transactions wait indefinitely for each other to release a lock, they are in a
deadlock, also called a deadly embrace. There are three deadlock control techniques:
prevention, detection, and avoidance.

•	 Concurrency control with time stamping methods assigns a unique time stamp to
each transaction and schedules the execution of conflicting transactions in time
stamp order. Two schemes are used to decide which transaction is rolled back and
which continues executing: the wait/die scheme and the wound/wait scheme.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 511

•	 Concurrency control with optimistic methods assumes that the majority of database
transactions do not conflict and that transactions are executed concurrently, using
private, temporary copies of the data. At commit time, the private copies are updated
to the database. The ANSI standard defines four transaction isolation levels: Read
Uncommitted, Read Committed, Repeatable Read, and Serializable.

•	 Database recovery restores the database from a given state to a previous consistent
state. Database recovery is triggered when a critical event occurs, such as a hardware
error or application error.

atomicity

atomic transaction property

binary lock

buffer

checkpoint

concurrency control

consistency

consistent database state

database-level lock

database recovery

database request

deadlock

deadly embrace

deferred update

deferred-write technique

dirty read

diskpage

durability

exclusive lock

field-level lock

immediate update

inconsistent retrieval

isolation

lock

lock granularity

lock manager

lost update

monotonicity

mutual exclusive rule

nonrepeatable read

optimistic approach

page

page-level lock

pessimistic locking

phantom read

Read Committed

Read Uncommitted

redundant transaction log

Repeatable Read

row-level lock

scheduler

serializability

Serializable

serializable schedule

shared lock

table-level lock

time stamping

transaction

transaction log

two-phase locking (2PL)

uncommitted data

uniqueness

wait/die

wound/wait

write-ahead-log protocol

write-through technique

Key Terms

Flashcards and crossword
puzzles for key term practice
are available at
www.cengagebrain.com.

Online
Content

1.	 Explain the following statement: A transaction is a logical unit of work.
2.	 What is a consistent database state, and how is it achieved?
3.	 The DBMS does not guarantee that the semantic meaning of the transaction

truly represents the real-world event. What are the possible consequences of that
limitation? Give an example.

4.	 List and discuss the four individual transaction properties.
5.	 What does serializability of transactions mean?
6.	 What is a transaction log, and what is its function?

Review Questions

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

512 Part 4 Advanced Database Concepts

7.	 What is a scheduler, what does it do, and why is its activity important to concurrency
control?

8.	 What is a lock, and how does it work in general?
9.	 What are the different levels of lock granularity?

10.	 Why might a page-level lock be preferred over a field-level lock?
11.	 What is concurrency control, and what is its objective?
12.	 What is an exclusive lock, and under what circumstances is it granted?
13.	 What is a deadlock, and how can it be avoided? Discuss several strategies for dealing

with deadlocks.
14.	 What are some disadvantages of time stamping methods for concurrency control?
15.	 Why might it take a long time to complete transactions when using an optimistic

approach to concurrency control?
16.	 What are the three types of database-critical events that can trigger the database

recovery process? Give some examples for each one.
17.	 What are the four ANSI transaction isolation levels? What type of reads does each

level allow?

1.	 Suppose that you are a manufacturer of product ABC, which is composed of parts A,
B, and C. Each time a new product ABC is created, it must be added to the product
inventory, using the PROD_QOH in a table named PRODUCT. Also, each time the
product is created, the parts inventory, using PART_QOH in a table named PART,
must be reduced by one each of parts A, B, and C. The sample database contents are
shown in Table P10.1.

Problems

TABLE P10.1

TABLE NAME: PRODUCT TABLE NAME: PART
PROD_CODE PROD_QOH PART_CODE PART_QOH

ABC 1,205 A 567

B 98

C 549

Given the preceding information, answer Questions a through e.
a.	 How many database requests can you identify for an inventory update for both

PRODUCT and PART?
b.	 Using SQL, write each database request you identified in Step a.
c.	 Write the complete transaction(s).
d.	 Write the transaction log, using Table 10.1 as your template.
e.	 Using the transaction log you created in Step d, trace its use in database recovery.

2.	 Describe the three most common problems with concurrent transaction execution.
Explain how concurrency control can be used to avoid those problems.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 Chapter 10 Transaction Management and Concurrency Control 513

3.	 What DBMS component is responsible for concurrency control? How is this
feature used to resolve conflicts?

4.	 Using a simple example, explain the use of binary and shared/exclusive locks
in a DBMS.

5.	 Suppose that your database system has failed. Describe the database recovery
process and the use of deferred-write and write-through techniques.

6.	 ABC Markets sell products to customers. The relational diagram shown
in Figure P10.6 represents the main entities for ABC’s database. Note the
following important characteristics:
•	 A customer may make many purchases, each one represented by an invoice.

•	 The CUS_BALANCE is updated with each credit purchase or payment and
represents the amount the customer owes.

•	 The CUS_BALANCE is increased (+) with every credit purchase and decreased
(–) with every customer payment.

•	 The date of last purchase is updated with each new purchase made by the customer.
•	 The date of last payment is updated with each new payment made by the customer.

•	 An invoice represents a product purchase by a customer.
•	 An INVOICE can have many invoice LINEs, one for each product purchased.
•	 The INV_TOTAL represents the total cost of the invoice, including taxes.
•	 The INV_TERMS can be “30,” “60,” or “90” (representing the number of days

of credit) or “CASH,” “CHECK,” or “CC.”
•	 The invoice status can be “OPEN,” “PAID,” or “CANCEL.”

•	 A product’s quantity on hand (P_QTYOH) is updated (decreased) with each
product sale.

The Ch10_ABC_Markets data-
base is available at www.
cengagebrain.com. Use this
database to provide solutions
for Problems 6–11.

Online
Content

FIGURE P10.6  THE ABC MARKETS RELATIONAL DIAGRAM 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

514 Part 4 Advanced Database Concepts

•	 A customer may make many payments. The payment type (PMT_TYPE) can be
one of the following:
•	 “CASH” for cash payments.
•	 “CHECK” for check payments.
•	 “CC” for credit card payments.

•	 The payment details (PMT_DETAILS) are used to record data about check or
credit card payments:
•	 The bank, account number, and check number for check payments.
•	 The issuer, credit card number, and expiration date for credit card payments.

Note: Not all entities and attributes are represented in this example. Use only the attri-
butes indicated.

	 Using this database, write the SQL code to represent each of the following transac-
tions. Use BEGIN TRANSACTION and COMMIT to group the SQL statements in
logical transactions.
a.	 On May 11, 2016, customer 10010 makes a credit purchase (30 days) of one unit

of product 11QER/31 with a unit price of $110.00; the tax rate is 8 percent. The
invoice number is 10983, and this invoice has only one product line.

b.	 On June 3, 2016, customer 10010 makes a payment of $100 in cash. The payment
ID is 3428.

7.	 Create a simple transaction log (using the format shown in Table 10.14) to represent
the actions of the transactions in Problems 6a and 6b.

8.	 Assuming that pessimistic locking is being used but the two-phase locking proto-
col is not, create a chronological list of the locking, unlocking, and data manipula-
tion activities that would occur during the complete processing of the transaction
described in Problem 6a.

9.	 Assuming that pessimistic locking is being used with the two-phase locking protocol,
create a chronological list of the locking, unlocking, and data manipulation activities
that would occur during the complete processing of the transaction described in
Problem 6a.

10.	 Assuming that pessimistic locking is being used but the two-phase locking proto-
col is not, create a chronological list of the locking, unlocking, and data manipula-
tion activities that would occur during the complete processing of the transaction
described in Problem 6b.

11.	 Assuming that pessimistic locking with the two-phase locking protocol is being used
with row-level lock granularity, create a chronological list of the locking, unlocking,
and data manipulation activities that would occur during the complete processing of
the transaction described in Problem 6b.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

