
Chapter 6
Normalization of Database Tables

In this chapter, you will learn:
• What normalization is and what role it plays in the database design process
• About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF
• How normal forms can be transformed from lower normal forms to higher normal forms
• That normalization and ER modeling are used concurrently to produce a good database design
• That some situations require denormalization to generate information efficiently

Preview Good database design must be matched to good table structures. In this chapter, you
will learn to evaluate and design good table structures to control data redundancies,
thereby avoiding data anomalies. The process that yields such desirable results is known
as normalization.

To recognize and appreciate the characteristics of a good table structure, it is useful to
examine a poor one. Therefore, the chapter begins by examining the characteristics of a
poor table structure and the problems it creates. You then learn how to correct the table
structure. This methodology will yield important dividends: you will know how to design
a good table structure and how to repair a poor one.

You will discover not only that data anomalies can be eliminated through normaliza-
tion, but that a properly normalized set of table structures is actually less complicated to
use than an unnormalized set. In addition, you will learn that the normalized set of table
structures more faithfully reflects an organization’s real operations.

Data Files and Available Formats
MS Access Oracle MS SQL My SQL

CH06_ConstructCo P	 P	 P	 P

CH06_Eval P	 P	 P	 P

CH06_Service P	 P	 P	 P

MS Access Oracle MS SQL My SQL

Data Files Available on cengagebrain.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202 Part 2 Design Concepts

6-1 Database Tables and Normalization
Having good relational database software is not enough to avoid the data redundancy
discussed in Chapter 1, Database Systems. If the database tables are treated as though
they are files in a file system, the relational database management system (RDBMS)
never has a chance to demonstrate its superior data-handling capabilities.

The table is the basic building block of database design. Consequently, the table’s
structure is of great interest. Ideally, the database design process explored in Chapter
4, Entity Relationship (ER) Modeling, yields good table structures. Yet, it is possible to
create poor table structures even in a good database design. How do you recognize a
poor table structure, and how do you produce a good table? The answer to both ques-
tions involves normalization. Normalization is a process for evaluating and correcting
table structures to minimize data redundancies, thereby reducing the likelihood of data
anomalies. The normalization process involves assigning attributes to tables based on
the concept of determination you learned in Chapter 3, The Relational Database Model.

Normalization works through a series of stages called normal forms. The first three
stages are described as first normal form (1NF), second normal form (2NF), and third
normal form (3NF). From a structural point of view, 2NF is better than 1NF, and 3NF
is better than 2NF. For most purposes in business database design, 3NF is as high as
you need to go in the normalization process. However, you will discover that properly
designed 3NF structures also meet the requirements of fourth normal form (4NF).

Although normalization is a very important ingredient in database design, you should
not assume that the highest level of normalization is always the most desirable. Gener-
ally, the higher the normal form, the more relational join operations you need to produce
a specified output. Also, more resources are required by the database system to respond
to end-user queries. A successful design must also consider end-user demand for fast
performance. Therefore, you will occasionally need to denormalize some portions of a
database design to meet performance requirements. Denormalization produces a lower
normal form; that is, a 3NF will be converted to a 2NF through denormalization. How-
ever, the price you pay for increased performance through denormalization is greater
data redundancy.

Although the word table is used throughout this chapter, formally, normalization is con-
cerned with relations. In Chapter 3 you learned that the terms table and relation are fre-
quently used interchangeably. In fact, you can say that a table is the implementation view
of a logical relation that meets some specific conditions. (See Table 3.1.) However, being
more rigorous, the mathematical relation does not allow duplicate tuples; whereas they
could exist in tables (see Section 6-5). Also, in normalization terminology, any attribute
that is at least part of a key is known as a prime attribute instead of the more common
term key attribute, which was introduced earlier. Conversely, a nonprime attribute, or
a nonkey attribute, is not part of any candidate key.

Note

normalization
A process that assigns
attributes to entities so
that data redundancies
are reduced or
eliminated.

denormalization
A process by which a
table is changed from
a higher-level normal
form to a lower-level
normal form, usually
to increase processing
speed. Denormalization
potentially yields data
anomalies.

prime attribute
A key attribute; that is, an
attribute that is part of a
key or is the whole key.
See also key attributes.

key attributes
The attributes that form
a primary key. See also
prime attribute.

nonprime attribute
An attribute that is not
part of a key.

nonkey attribute
See nonprime attribute.

6-2 The Need For Normalization
Normalization is typically used in conjunction with the entity relationship modeling
that you learned in the previous chapters. Database designers commonly use normaliza-
tion in two situations. When designing a new database structure based on the business
requirements of the end users, the database designer will construct a data model using
a technique such as Crow’s Foot notation ERDs. After the initial design is complete,

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 203

the designer can use normalization to analyze the relationships among the attributes
within each entity and determine if the structure can be improved through normaliza-
tion. Alternatively, database designers are often asked to modify existing data structures
that can be in the form of flat files, spreadsheets, or older database structures. Again, by
analyzing relationships among the attributes or fields in the data structure, the database
designer can use the normalization process to improve the existing data structure and
create an appropriate database design. Whether you are designing a new database struc-
ture or modifying an existing one, the normalization process is the same.

To get a better idea of the normalization process, consider the simplified database
activities of a construction company that manages several building projects. Each project
has its own project number, name, assigned employees, and so on. Each employee has an
employee number, name, and job classification, such as engineer or computer technician.

The company charges its clients by billing the hours spent on each contract. The hourly
billing rate is dependent on the employee’s position. For example, one hour of computer
technician time is billed at a different rate than one hour of engineer time. Periodically, a
report is generated that contains the information displayed in Table 6.1.

The total charge in Table 6.1 is a derived attribute and is not stored in the table at this
point.

The easiest short-term way to generate the required report might seem to be a table
whose contents correspond to the reporting requirements. (See Figure 6.1.)

FIGURE 6.1 TABULAR REPRESENTATION OF THE REPORT FORMAT

Table name: RPT_FORMAT Database name: Ch06_ConstructCo

Note that the data in Figure 6.1 reflects the assignment of employees to projects.
Apparently, an employee can be assigned to more than one project. For example, Dar-
lene Smithson (EMP_NUM = 112) has been assigned to two projects: Amber Wave and
Starflight. Given the structure of the dataset, each project includes only a single occur-
rence of any one employee. Therefore, knowing the PROJ_NUM and EMP_NUM values
will let you find the job classification and its hourly charge. In addition, you will know
the total number of hours each employee worked on each project. (The total charge—a
derived attribute whose value can be computed by multiplying the hours billed and the
charge per hour—has not been included in Figure 6.1. No structural harm is done if this
derived attribute is included.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204 Part 2 Design Concepts
TA

BL
E

6.
1

A
 S

A
M

PL
E

RE
PO

RT
 L

AY
O

U
T

PR
O

JE
C

T
N

U
M

BE
R

PR
O

JE
C

T
N

A
M

E
EM

PL
O

YE
E

N
U

M
BE

R
EM

PL
O

YE
E

N
A

M
E

JO
B

CL
A

SS
CH

A
RG

E/

H
O

U
R

H
O

U
RS

BI

LL
ED

TO
TA

L
CH

A
RG

E
15

Ev
er

gr
ee

n
10

3
Ju

ne
 E

. A
rb

ou
gh

El
ec

. E
ng

in
ee

r
$

84
.5

0
23

.8
$

 2
,0

11
.1

0

10
1

Jo
hn

 G
. N

ew
s

D
at

ab
as

e
D

es
ig

ne
r

$1
05

.0
0

19
.4

$
 2

,0
37

.0
0

10
5

A
lic

e
K.

 Jo
hn

so
n

*
D

at
ab

as
e

D
es

ig
ne

r
$1

05
.0

0
35

.7
$

 3
,7

48
.5

0

10
6

W
ill

ia
m

 S
m

ith
fie

ld
Pr

og
ra

m
m

er
$

35
.7

5
12

.6
$

 4

50
.4

5

10
2

D
av

id
 H

. S
en

io
r

Sy
st

em
s

A
na

ly
st

$
96

.7
5

23
.8

$
 2

,3
02

.6
5

Su
bt

ot
al

$1
0,

54
9.

70

18
A

m
be

r W
av

e
11

4
A

nn
el

is
e

Jo
ne

s
A

pp
lic

at
io

ns
 D

es
ig

ne
r

$
48

.1
0

24
.6

$
 1

,1
83

.2
6

11
8

Ja
m

es
 J.

 F
ro

m
m

er
G

en
er

al
 S

up
po

rt
$

18
.3

6
45

.3
$

 8

31
.7

1

10
4

A
nn

e
K.

 R
am

or
as

 *
Sy

st
em

s
A

na
ly

st
$

96
.7

5
32

.4
$

 3
,1

34
.7

0

11
2

D
ar

le
ne

 M
. S

m
ith

so
n

D
SS

 A
na

ly
st

$
45

.9
5

44
.0

$
 2

,0
21

.8
0

Su
bt

ot
al

$
7,

17
1.

47

22
Ro

lli
ng

 T
id

e
10

5
A

lic
e

K.
 Jo

hn
so

n
D

at
ab

as
e

D
es

ig
ne

r
$1

05
.0

0
64

.7
$

 6
,7

93
.5

0

10
4

A
nn

e
K.

 R
am

or
as

Sy
st

em
s

A
na

ly
st

$9
6.

75
48

.4
$

 4
,6

82
.7

0

11
3

D
el

be
rt

 K
. J

oe
nb

ro
od

 *
A

pp
lic

at
io

ns
 D

es
ig

ne
r

$4
8.

10
23

.6
$

 1
,1

35
.1

6

11
1

G
eo

ff
B.

 W
ab

as
h

Cl
er

ic
al

 S
up

po
rt

$2
6.

87
22

.0
$

 5

91
.1

4

10
6

W
ill

ia
m

 S
m

ith
fie

ld
Pr

og
ra

m
m

er
$3

5.
75

12
.8

$

 4
57

.6
0

Su
bt

ot
al

$1
3,

66
0.

10

25
St

ar
fli

gh
t

10
7

M
ar

ia
 D

. A
lo

nz
o

Pr
og

ra
m

m
er

$
35

.7
5

24
.6

$

 8
79

.4
5

11
5

Tr
av

is
 B

. B
aw

an
gi

Sy
st

em
s

A
na

ly
st

$
96

.7
5

45
.8

$
 4

,4
31

.1
5

10
1

Jo
hn

 G
. N

ew
s

*
D

at
ab

as
e

D
es

ig
ne

r
$1

05
.0

0
56

.3
$

 5
,9

11
.5

0

11
4

A
nn

el
is

e
Jo

ne
s

A
pp

lic
at

io
ns

 D
es

ig
ne

r
$

48
.1

0
33

.1
$

 1
,5

92
.1

1

10
8

Ra
lp

h
B.

 W
as

hi
ng

to
n

Sy
st

em
s

A
na

ly
st

$
96

.7
5

23
.6

$
 2

,2
83

.3
0

11
8

Ja
m

es
 J.

 F
ro

m
m

er
G

en
er

al
 S

up
po

rt
$

18
.3

6
30

.5
$

 5

59
.9

8

11
2

D
ar

le
ne

 M
. S

m
ith

so
n

D
SS

 A
na

ly
st

$
45

.9
5

41
.4

$
 1

,9
02

.3
3

Su
bt

ot
al

$1
7,

55
9.

82

To
ta

l
$4

8,
94

1.
09

N
ot

e:
 A

 *
 in

di
ca

te
s

th
e

pr
oj

ec
t l

ea
de

r.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 205

Unfortunately, the structure of the dataset in Figure 6.1 does not conform to the
requirements discussed in Chapter 3, nor does it handle data very well. Consider the
following deficiencies:
1. The project number (PROJ_NUM) is apparently intended to be a primary key (PK) or

at least a part of a PK, but it contains nulls. Given the preceding discussion, you know
that PROJ_NUM + EMP_NUM will define each row.

2. The table entries invite data inconsistencies. For example, the JOB_CLASS value
“Elect. Engineer” might be entered as “Elect.Eng.” in some cases, “El. Eng.” in others,
and “EE” in still others.

3. The table displays data redundancies that yield the following anomalies:
a. Update anomalies. Modifying the JOB_CLASS for employee number 105 requires

many potential alterations, one for each EMP_NUM = 105.
b. Insertion anomalies. Just to complete a row definition, a new employee must be

assigned to a project. If the employee is not yet assigned, a phantom project must
be created to complete the employee data entry.

c. Deletion anomalies. Suppose that only one employee is associated with a given
project. If that employee leaves the company and the employee data is deleted, the
project information will also be deleted. To prevent the loss of the project informa-
tion, a fictitious employee must be created.

In spite of those structural deficiencies, the table structure appears to work; the report
is generated with ease. Unfortunately, the report might yield varying results depending
on what data anomaly has occurred. For example, if you want to print a report to show
the total “hours worked” value by the job classification “Database Designer,” that report
will not include data for “DB Design” and “Database Design” data entries. Such reporting
anomalies cause a multitude of problems for managers—and cannot be fixed through
application programming.

Even if careful data-entry auditing can eliminate most of the reporting problems (at
a high cost), it is easy to demonstrate that even a simple data entry becomes inefficient.
Given the existence of update anomalies, suppose Darlene M. Smithson is assigned to
work on the Evergreen project. The data-entry clerk must update the PROJECT file with
the following entry:

15 Evergreen 112 Darlene M. Smithson DSS Analyst $45.95 0.0

to match the attributes PROJ_NUM, PROJ_NAME, EMP_NUM, EMP_NAME, JOB_
CLASS, CHG_HOUR, and HOURS. (If Smithson has just been assigned to the project,
the total number of hours worked is 0.0.)

Remember that the naming convention makes it easy to see what each attribute stands for
and its likely origin. For example, PROJ_NAME uses the prefix PROJ to indicate that the attri-
bute is associated with the PROJECT table, while the NAME component is self-documenting
as well. However, keep in mind that name length is also an issue, especially in the prefix des-
ignation. For that reason, the prefix CHG was used rather than CHARGE. (Given the database’s
context, it is not likely that the prefix will be misunderstood.)

Note

Each time another employee is assigned to a project, some data entries (such as
PROJ_NAME, EMP_NAME, and CHG_HOUR) are unnecessarily repeated. Imagine

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206 Part 2 Design Concepts

the data-entry chore when 200 or 300 table entries must be made! The entry of the
employee number should be sufficient to identify Darlene M. Smithson, her job descrip-
tion, and her hourly charge. Because only one person is identified by the number 112,
that person’s characteristics (name, job classification, and so on) should not have to be
entered each time the main file is updated. Unfortunately, the structure displayed in
Figure 6.1 does not make allowances for that possibility.

The data redundancy evident in Figure 6.1 leads to wasted data storage space. Even
worse, data redundancy produces data anomalies. For example, suppose the data-entry
clerk had entered the data as:

15 Evergeen 112 Darla Smithson DCS Analyst $45.95 0.0

At first glance, the data entry appears to be correct. But is Evergeen the same project as
Evergreen? And is DCS Analyst supposed to be DSS Analyst? Is Darla Smithson the same
person as Darlene M. Smithson? Such confusion is a data integrity problem because
the data entry failed to conform to the rule that all copies of redundant data must be
identical.

The possibility of introducing data integrity problems caused by data redundancy
must be considered during database design. The relational database environment is
especially well suited to help the designer overcome those problems.

6-3 The Normalization Process
In this section, you will learn how to use normalization to produce a set of normalized
tables to store the data that will be used to generate the required information. The objec-
tive of normalization is to ensure that each table conforms to the concept of well-formed
relations—in other words, tables that have the following characteristics:
• Each table represents a single subject. For example, a COURSE table will contain only

data that directly pertain to courses. Similarly, a STUDENT table will contain only
student data.

• No data item will be unnecessarily stored in more than one table (in short, tables have
minimum controlled redundancy). The reason for this requirement is to ensure that
the data is updated in only one place.

• All nonprime attributes in a table are dependent on the primary key—the entire
primary key and nothing but the primary key. The reason for this requirement is to
ensure that the data is uniquely identifiable by a primary key value.

• Each table is void of insertion, update, or deletion anomalies, which ensures the integ-
rity and consistency of the data.
To accomplish the objective, the normalization process takes you through the steps

that lead to successively higher normal forms. The most common normal forms and
their basic characteristic are listed in Table 6.2. You will learn the details of these normal
forms in the indicated sections.

The concept of keys is central to the discussion of normalization. Recall from Chap-
ter 3 that a candidate key is a minimal (irreducible) superkey. The primary key is the
candidate key selected to be the primary means used to identify the rows in the table.
Although normalization is typically presented from the perspective of candidate keys,
this initial discussion assumes for the sake of simplicity that each table has only one can-
didate key; therefore, that candidate key is the primary key.

From the data modeler’s point of view, the objective of normalization is to ensure that
all tables are at least in third normal form (3NF). Even higher-level normal forms exist.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 207

However, normal forms such as the fifth normal form (5NF) and domain-key normal
form (DKNF) are not likely to be encountered in a business environment and are mainly
of theoretical interest. Such higher normal forms usually increase joins, which slows
performance without adding any value in the elimination of data redundancy. Some
very specialized applications, such as statistical research, might require normalization
beyond the 4NF, but those applications fall outside the scope of most business opera-
tions. Because this book focuses on practical applications of database techniques, the
higher-level normal forms are not covered.

Functional Dependence Before outlining the normalization process, it is a good idea
to review the concepts of determination and functional dependence that were covered in
detail in Chapter 3. Table 6.3 summarizes the main concepts.

It is crucial to understand these concepts because they are used to derive the set
of functional dependencies for a given relation. The normalization process works one
relation at a time, identifying the dependencies on that relation and normalizing the
relation. As you will see in the following sections, normalization starts by identifying
the dependencies of a given relation and progressively breaking up the relation (table)
into a set of new relations (tables) based on the identified dependencies.

Two types of functional dependencies that are of special interest in normalization
are partial dependencies and transitive dependencies. A partial dependency exists
when there is a functional dependence in which the determinant is only part of the
primary key (remember the assumption that there is only one candidate key). For
example, if (A, B) → (C, D), B → C, and (A, B) is the primary key, then the functional

TABLE 6.2

NORMAL FORMS

NORMAL FORM CHARACTERISTIC SECTION
First normal form (1NF) Table format, no repeating groups, and PK identified 6-3a

Second normal form (2NF) 1NF and no partial dependencies 6-3b

Third normal form (3NF) 2NF and no transitive dependencies 6-3c

Boyce-Codd normal form (BCNF) Every determinant is a candidate key (special case of 3NF) 6-6a

Fourth normal form (4NF) 3NF and no independent multivalued dependencies 6-6b

TABLE 6.3

FUNCTIONAL DEPENDENCE CONCEPTS

CONCEPT DEFINITION
Functional dependence The attribute B is fully functionally dependent on the attribute A if each value of A

determines one and only one value of B.
Example: PROJ_NUM → PROJ_NAME
(read as PROJ_NUM functionally determines PROJ_NAME)
In this case, the attribute PROJ_NUM is known as the determinant attribute, and the
attribute PROJ_NAME is known as the dependent attribute.

Functional dependence
(generalized definition)

Attribute A determines attribute B (that is, B is functionally dependent on A) if all
(generalized definition) of the rows in the table that agree in value for attribute A also
agree in value for attribute B.

Fully functional dependence
(composite key)

If attribute B is functionally dependent on a composite key A but not on any subset of
that composite key, the attribute B is fully functionally dependent on A.

partial dependency
A condition in which an
attribute is dependent
on only a portion
(subset) of the primary
key.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208 Part 2 Design Concepts

dependence B → C is a partial dependency because only part of the primary key (B)
is needed to determine the value of C. Partial dependencies tend to be straightforward
and easy to identify.

A transitive dependency exists when there are functional dependencies such that
X → Y, Y → Z, and X is the primary key. In that case, the dependency X → Z is a transi-
tive dependency because X determines the value of Z via Y. Unlike partial dependencies,
transitive dependencies are more difficult to identify among a set of data. Fortunately,
there is an effective way to identify transitive dependencies: they occur only when a
functional dependence exists among nonprime attributes. In the previous example, the
actual transitive dependency is X → Z. However, the dependency Y → Z signals that
a transitive dependency exists. Hence, throughout the discussion of the normalization
process, the existence of a functional dependence among nonprime attributes will be
considered a sign of a transitive dependency. To address the problems related to tran-
sitive dependencies, changes to the table structure are made based on the functional
dependence that signals the transitive dependency’s existence. Therefore, to simplify the
description of normalization, from this point forward the signaling dependency will be
called the transitive dependency.

6-3a Conversion To First Normal Form
Because the relational model views data as part of a table or a collection of tables in
which all key values must be identified, the data depicted in Figure 6.1 might not be
stored as shown. Note that Figure 6.1 contains what is known as repeating groups. A
repeating group derives its name from the fact that a group of multiple entries of the
same type can exist for any single key attribute occurrence. In Figure 6.1, note that each
single project number (PROJ_NUM) occurrence can reference a group of related data
entries. For example, the Evergreen project (PROJ_NUM = 15) shows five entries at this
point—and those entries are related because they each share the PROJ_NUM = 15 char-
acteristic. Each time a new record is entered for the Evergreen project, the number of
entries in the group grows by one.

A relational table must not contain repeating groups. The existence of repeating
groups provides evidence that the RPT_FORMAT table in Figure 6.1 fails to meet even
the lowest normal form requirements, thus reflecting data redundancies.

Normalizing the table structure will reduce the data redundancies. If repeating groups
do exist, they must be eliminated by making sure that each row defines a single entity.
In addition, the dependencies must be identified to diagnose the normal form. Identi-
fication of the normal form lets you know where you are in the normalization process.
Normalization starts with a simple three-step procedure.

Step 1: Eliminate the Repeating Groups Start by presenting the data in a tabular
format, where each cell has a single value and there are no repeating groups. To elimi-
nate the repeating groups, eliminate the nulls by making sure that each repeating group
attribute contains an appropriate data value. That change converts the table in Figure 6.1
to 1NF in Figure 6.2.

Step 2: Identify the Primary Key The layout in Figure 6.2 represents more than
a mere cosmetic change. Even a casual observer will note that PROJ_NUM is not an
adequate primary key because the project number does not uniquely identify all of the
remaining entity (row) attributes. For example, the PROJ_NUM value 15 can identify
any one of five employees. To maintain a proper primary key that will uniquely identify
any attribute value, the new key must be composed of a combination of PROJ_NUM
and EMP_NUM. For example, using the data shown in Figure 6.2, if you know that

transitive
dependency
A condition in which an
attribute is dependent
on another attribute that
is not part of the primary
key.

repeating group
In a relation, a
characteristic describing
a group of multiple
entries of the same type
for a single key attribute
occurrence. For example,
a car can have multiple
colors for its top, interior,
bottom, trim, and so on.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 209

PROJ_NUM = 15 and EMP_NUM = 103, the entries for the attributes PROJ_NAME,
EMP_NAME, JOB_CLASS, CHG_HOUR, and HOURS must be Evergreen, June E.
Arbough, Elect. Engineer, $84.50, and 23.8, respectively.

Step 3: Identify All Dependencies The identification of the PK in Step 2 means that
you have already identified the following dependency:

PROJ_NUM, EMP_NUM → PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR,
HOURS

That is, the PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOUR, and HOURS
values are all dependent on—they are determined by—the combination of PROJ_NUM
and EMP_NUM. There are additional dependencies. For example, the project number
identifies (determines) the project name. In other words, the project name is dependent
on the project number. You can write that dependency as:

PROJ_NUM → PROJ_NAME

Also, if you know an employee number, you also know that employee’s name, job
classification, and charge per hour. Therefore, you can identify the dependency shown
next:

EMP_NUM → EMP_NAME, JOB_CLASS, CHG_HOUR

In simpler terms, an employee has the following attributes: a number, a name, a job
classification, and a charge per hour. However, by further studying the data in Figure
6.2, you can see that knowing the job classification means knowing the charge per hour
for that job classification. (Notice that all “System Analyst” or “Programmer” positions
have the same charge per hour regardless of the project or employee.) In other words, the
charge per hour depends on the job classification, not the employee. Therefore, you can
identify one last dependency:

JOB_CLASS → CHG_HOUR

FIGURE 6.2 A TABLE IN FIRST NORMAL FORM

Table name: DATA_ORG_1NF Database name: Ch06_ConstructCo

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210 Part 2 Design Concepts

This dependency exists between two nonprime attributes; therefore, it is a signal
that a transitive dependency exists, and we will refer to it as a transitive dependency.
The dependencies you have just examined can also be depicted with the help of the
diagram shown in Figure 6.3. Because such a diagram depicts all dependencies found
within a given table structure, it is known as a dependency diagram. Dependency
diagrams are very helpful in getting a bird’s-eye view of all the relationships among a
table’s attributes, and their use makes it less likely that you will overlook an important
dependency.

FIGURE 6.3 FIRST NORMAL FORM (1NF) DEPENDENCY DIAGRAM

TRANSITIVE DEPENDENCY:
 (JOB_CLASS CHG_HOUR)

PARTIAL DEPENDENCIES:
 (PROJ_NUM PROJ_NAME)
 (EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR)

EMP_NUM EMP_NAMEPROJ_NUM PROJ_NAME CHG_HOURJOB_CLASS HOURS

Transitive
dependency

Partial dependency

Partial dependencies

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

As you examine Figure 6.3, note the following features of a dependency diagram:
1. The primary key attributes are bold, underlined, and in a different color.
2. The arrows above the attributes indicate all desirable dependencies—that is, depen-

dencies based on the primary key. In this case, note that the entity’s attributes are
dependent on the combination of PROJ_NUM and EMP_NUM.

3. The arrows below the dependency diagram indicate less desirable dependencies. Two
types of such dependencies exist:
a. Partial dependencies. You need to know only the PROJ_NUM to determine the

PROJ_NAME; that is, the PROJ_NAME is dependent on only part of the primary
key. Also, you need to know only the EMP_NUM to find the EMP_NAME, the
JOB_CLASS, and the CHG_HOUR. A dependency based on only a part of a com-
posite primary key is a partial dependency.

b. Transitive dependencies. Note that CHG_HOUR is dependent on JOB_CLASS.
Because neither CHG_HOUR nor JOB_CLASS is a prime attribute—that is, nei-
ther attribute is at least part of a key—the condition is a transitive dependency. In
other words, a transitive dependency is a dependency of one nonprime attribute
on another nonprime attribute. The problem with transitive dependencies is that
they still yield data anomalies.

Figure 6.3 includes the relational schema for the table in 1NF and a textual notation
for each identified dependency.

dependency
diagram
A representation of all
data dependencies
(primary key, partial, or
transitive) within a table.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 211

All relational tables satisfy the 1NF requirements. The problem with the 1NF table
structure shown in Figure 6.3 is that it contains partial dependencies—dependencies
based on only a part of the primary key.

While partial dependencies are sometimes used for performance reasons, they
should be used with caution. Such caution is warranted because a table that contains
partial dependencies is still subject to data redundancies, and therefore to various
anomalies. The data redundancies occur because every row entry requires duplica-
tion of data. For example, if Alice K. Johnson submits her work log, then the user
would have to make multiple entries during the course of a day. For each entry, the
EMP_NAME, JOB_CLASS, and CHG_HOUR must be entered each time, even though
the attribute values are identical for each row entered. Such duplication of effort is very
inefficient, and it helps create data anomalies; nothing prevents the user from typing
slightly different versions of the employee name, the position, or the hourly pay. For
instance, the employee name for EMP_NUM = 102 might be entered as Dave Senior or
D. Senior. The project name might also be entered correctly as Evergreen or misspelled
as Evergeen. Such data anomalies violate the relational database’s integrity and consis-
tency rules.

6-3b Conversion To Second Normal Form
Conversion to 2NF occurs only when the 1NF has a composite primary key. If the 1NF
has a single-attribute primary key, then the table is automatically in 2NF. The 1NF-to-
2NF conversion is simple. Starting with the 1NF format displayed in Figure 6.3, you take
the following steps:

Step 1: Make New Tables to Eliminate Partial Dependencies For each component
of the primary key that acts as a determinant in a partial dependency, create a new table
with a copy of that component as the primary key. While these components are placed
in the new tables, it is important that they also remain in the original table as well. The
determinants must remain in the original table because they will be the foreign keys for
the relationships needed to relate these new tables to the original table. To construct the
revised dependency diagram, write each key component on a separate line and then
write the original (composite) key on the last line. For example:

PROJ_NUM

EMP_NUM

PROJ_NUM EMP_NUM

Each component will become the key in a new table. In other words, the original table
is now divided into three tables (PROJECT, EMPLOYEE, and ASSIGNMENT).

The term first normal form (1NF) describes the tabular format in which:

• All of the key attributes are defined.

• There are no repeating groups in the table. In other words, each row/column inter-
section contains one and only one value, not a set of values.

• All attributes are dependent on the primary key.

Note

first normal form
(1NF)
The first stage in
the normalization
process. It describes
a relation depicted in
tabular format, with
no repeating groups
and a primary key
identified. All nonkey
attributes in the relation
are dependent on the
primary key.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212 Part 2 Design Concepts

Step 2: Reassign Corresponding Dependent Attributes Use Figure 6.3 to deter-
mine attributes that are dependent in the partial dependencies. The dependencies for
the original key components are found by examining the arrows below the dependency
diagram shown in Figure 6.3. The attributes that are dependent in a partial dependency
are removed from the original table and placed in the new table with the dependency’s
determinant. Any attributes that are not dependent in a partial dependency will remain
in the original table. In other words, the three tables that result from the conversion to
2NF are given appropriate names (PROJECT, EMPLOYEE, and ASSIGNMENT) and are
described by the following relational schemas:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Because the number of hours spent on each project by each employee is dependent
on both PROJ_NUM and EMP_NUM in the ASSIGNMENT table, you leave those
hours in the ASSIGNMENT table as ASSIGN_HOURS. Notice that the ASSIGNMENT
table contains a composite primary key composed of the attributes PROJ_NUM and
EMP_NUM. Notice that by leaving the determinants in the original table as well as
making them the primary keys of the new tables, primary key/foreign key relation-
ships have been created. For example, in the EMPLOYEE table, EMP_NUM is the
primary key. In the ASSIGNMENT table, EMP_NUM is part of the composite primary
key (PROJ_NUM, EMP_NUM) and is a foreign key relating the EMPLOYEE table to
the ASSIGNMENT table.

The results of Steps 1 and 2 are displayed in Figure 6.4. At this point, most of the
anomalies discussed earlier have been eliminated. For example, if you now want to add,
change, or delete a PROJECT record, you need to go only to the PROJECT table and
make the change to only one row.

Because a partial dependency can exist only when a table’s primary key is composed
of several attributes, a table whose primary key consists of only a single attribute is auto-
matically in 2NF once it is in 1NF.

Figure 6.4 still shows a transitive dependency, which can generate anomalies. For
example, if the charge per hour changes for a job classification held by many employees,
that change must be made for each of those employees. If you forget to update some of
the employee records that are affected by the charge per hour change, different employ-
ees with the same job description will generate different hourly charges.

second normal form
(2NF)
The second stage in the
normalization process,
in which a relation is in
1NF and there are no
partial dependencies
(dependencies in only
part of the primary key).

A table is in second normal form (2NF) when:

• It is in 1NF.

and

• It includes no partial dependencies; that is, no attribute is dependent on only a portion
of the primary key.

It is still possible for a table in 2NF to exhibit transitive dependency. That is, the primary key
may rely on one or more nonprime attributes to functionally determine other nonprime
attributes, as indicated by a functional dependence among the nonprime attributes.

Note

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 213

6-3c Conversion To Third Normal Form
The data anomalies created by the database organization shown in Figure 6.4 are easily
eliminated by completing the following two steps:

Step 1: Make New Tables to Eliminate Transitive Dependencies For every
transitive dependency, write a copy of its determinant as a primary key for a new table.
A determinant is any attribute whose value determines other values within a row. If
you have three different transitive dependencies, you will have three different deter-
minants. As with the conversion to 2NF, it is important that the determinant remain
in the original table to serve as a foreign key. Figure 6.4 shows only one table that
contains a transitive dependency. Therefore, write the determinant for this transitive
dependency as:

JOB_CLASS

Step 2: Reassign Corresponding Dependent Attributes Using Figure 6.4,
identify the attributes that are dependent on each determinant identified in Step 1.
Place the dependent attributes in the new tables with their determinants and remove
them from their original tables. In this example, eliminate CHG_HOUR from the
EMPLOYEE table shown in Figure 6.4 to leave the EMPLOYEE table dependency
definition as:

EMP_NUM → EMP_NAME, JOB_CLASS

FIGURE 6.4 SECOND NORMAL FORM (2NF) CONVERSION RESULTS

TRANSITIVE DEPENDENCY
(JOB_CLASS CHG_HOUR)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS, CHG_HOUR)

PROJECT (PROJ_NUM, PROJ_NAME)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)Table name: ASSIGNMENT

Table name: EMPLOYEE

PROJ_NUM PROJ_NAME

Table name: PROJECT

PROJ_NUM EMP_NUM ASSIGN_HOURS

EMP_NUM EMP_NAME CHG_HOURJOB_CLASS

Transitive
dependency

determinant
Any attribute in a specific
row whose value directly
determines other values
in that row.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214 Part 2 Design Concepts

Draw a new dependency diagram to show all of the tables you have defined in Steps 1
and 2. Name the table to reflect its contents and function. In this case, JOB seems appro-
priate. Check all of the tables to make sure that each table has a determinant and that no
table contains inappropriate dependencies. When you have completed these steps, you
will see the results in Figure 6.5.

In other words, after the 3NF conversion has been completed, your database will
contain four tables:

PROJECT (PROJ_NUM, PROJ_NAME)

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

JOB (JOB_CLASS, CHG_HOUR)

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Note that this conversion has eliminated the original EMPLOYEE table’s transitive
dependency. The tables are now said to be in third normal form (3NF).

It is interesting to note the similarities between resolving 2NF and 3NF problems. To
convert a table from 1NF to 2NF, it is necessary to remove the partial dependencies. To con-
vert a table from 2NF to 3NF, it is necessary to remove the transitive dependencies. No mat-
ter whether the “problem” dependency is a partial dependency or a transitive dependency,

A table is in third normal form (3NF) when:

• It is in 2NF.

and

• It contains no transitive dependencies.

Note

third normal form
(3NF)
A table is in 3NF when it
is in 2NF and no nonkey
attribute is functionally
dependent on another
nonkey attribute; that
is, it cannot include
transitive dependencies.

FIGURE 6.5 THIRD NORMAL FORM (3NF) CONVERSION RESULTS

Table name: JOB

JOB (JOB_CLASS, CHG_HOUR)

JOB_CLASS CHG_HOUR

Table name: PROJECT

PROJECT (PROJ_NUM, PROJ_NAME)

PROJ_NUM PROJ_NAME EMP_NUM EMP_NAME JOB_CLASS

Table name: EMPLOYEE

EMPLOYEE (EMP_NUM, EMP_NAME, JOB_CLASS)

PROJ_NUM EMP_NUM ASSIGN_HOURS

Table name: ASSIGNMENT

ASSIGNMENT (PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 215

the solution is the same: create a new table for each problem dependency. The determinant
of the problem dependency remains in the original table and is placed as the primary key of
the new table. The dependents of the problem dependency are removed from the original
table and placed as nonprime attributes in the new table.

Be aware, however, that while the technique is the same, it is imperative that 2NF be
achieved before moving on to 3NF; be certain to resolve the partial dependencies before
resolving the transitive dependencies. Also, recall the assumption that was made at the
beginning of the normalization discussion—that each table has only one candidate key,
which is the primary key. If a table has multiple candidate keys, then the overall process
remains the same, but there are additional considerations.

For example, if a table has multiple candidate keys and one of them is a composite
key, the table can have partial dependencies based on this composite candidate key,
even when the primary key chosen is a single attribute. In those cases, following
the process described above, those dependencies would be perceived as transitive
dependencies and would not be resolved until 3NF. The simplified process described
above will allow the designer to achieve the correct result, but through practice, you
should recognize all candidate keys and their dependencies as such, and resolve them
appropriately. The existence of multiple candidate keys can also influence the identi-
fication of transitive dependencies. Previously, a transitive dependency was defined
to exist when one nonprime attribute determined another nonprime attribute. In
the presence of multiple candidate keys, the definition of a nonprime attribute as
an attribute that is not a part of any candidate key is critical. If the determinant of a
functional dependence is not the primary key but is a part of another candidate key,
then it is not a nonprime attribute and does not signal the presence of a transitive
dependency.

6-4 Improving the Design
Now that the table structures have been cleaned up to eliminate the troublesome par-
tial and transitive dependencies, you can focus on improving the database’s ability to
provide information and on enhancing its operational characteristics. In the next few
paragraphs, you will learn about the various types of issues you need to address to
produce a good normalized set of tables. Note that for space issues, each section pres-
ents just one example—the designer must apply the principle to all remaining tables
in the design. Remember that normalization cannot, by itself, be relied on to make
good designs. Instead, normalization is valuable because its use helps eliminate data
redundancies.

Evaluate PK Assignments Each time a new employee is entered into the EMPLOYEE
table, a JOB_CLASS value must be entered. Unfortunately, it is too easy to make
data-entry errors that lead to referential integrity violations. For example, entering DB
Designer instead of Database Designer for the JOB_CLASS attribute in the EMPLOYEE
table will trigger such a violation. Therefore, it would be better to add a JOB_CODE
attribute to create a unique identifier. The addition of a JOB_CODE attribute produces
the following dependency:

JOB_CODE → JOB_CLASS, CHG_HOUR

If you assume that the JOB_CODE is a proper primary key, this new attribute does
produce the following dependency:

JOB_CLASS → CHG_HOUR

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216 Part 2 Design Concepts

However, this dependency is not a transitive dependency because the determinant
is a candidate key. Further, the presence of JOB_CODE greatly decreases the likelihood
of referential integrity violations. Note that the new JOB table now has two candidate
keys—JOB_CODE and JOB_CLASS. In this case, JOB_CODE is the chosen primary key
as well as a surrogate key. A surrogate key, as you should recall, is an artificial PK intro-
duced by the designer with the purpose of simplifying the assignment of primary keys to
tables. Surrogate keys are usually numeric, they are often generated automatically by the
DBMS, they are free of semantic content (they have no special meaning), and they are
usually hidden from the end users.

Evaluate Naming Conventions It is best to adhere to the naming conventions out-
lined in Chapter 2, Data Models. Therefore, CHG_HOUR will be changed to JOB_CHG_
HOUR to indicate its association with the JOB table. In addition, the attribute name
JOB_CLASS does not quite describe entries such as Systems Analyst, Database Designer,
and so on; the label JOB_DESCRIPTION fits the entries better. Also, you might have
noticed that HOURS was changed to ASSIGN_HOURS in the conversion from 1NF to
2NF. That change lets you associate the hours worked with the ASSIGNMENT table.

Refine Attribute Atomicity It is generally good practice to pay attention to the ato-
micity requirement. An atomic attribute is one that cannot be further subdivided.
Such an attribute is said to display atomicity. Clearly, the use of the EMP_NAME in
the EMPLOYEE table is not atomic because EMP_NAME can be decomposed into a
last name, a first name, and an initial. By improving the degree of atomicity, you also
gain querying flexibility. For example, if you use EMP_LNAME, EMP_FNAME, and
EMP_INITIAL, you can easily generate phone lists by sorting last names, first names,
and initials. Such a task would be very difficult if the name components were within a
single attribute. In general, designers prefer to use simple, single-valued attributes, as
indicated by the business rules and processing requirements.

Identify New Attributes If the EMPLOYEE table were used in a real-world environ-
ment, several other attributes would have to be added. For example, year-to-date gross
salary payments, Social Security payments, and Medicare payments would be desirable.
An employee hire date attribute (EMP_HIREDATE) could be used to track an employee’s
job longevity, and it could serve as a basis for awarding bonuses to long-term employees
and for other morale-enhancing measures. The same principle must be applied to all
other tables in your design.

Identify New Relationships According to the original report, the users need to track
which employee is acting as the manager of each project. This can be implemented as
a relationship between EMPLOYEE and PROJECT. From the original report, it is clear
that each project has only one manager. Therefore, the system’s ability to supply detailed
information about each project’s manager is ensured by using the EMP_NUM as a for-
eign key in PROJECT. That action ensures that you can access the details of each PROJ-
ECT’s manager data without producing unnecessary and undesirable data duplication.
The designer must take care to place the right attributes in the right tables by using
normalization principles.

Refine Primary Keys as Required for Data Granularity Granularity refers to the
level of detail represented by the values stored in a table’s row. Data stored at its low-
est level of granularity is said to be atomic data, as explained earlier. In Figure 6.5, the
ASSIGNMENT table in 3NF uses the ASSIGN_HOURS attribute to represent the hours
worked by a given employee on a given project. However, are those values recorded at

atomic attribute
An attribute that cannot
be further subdivided
to produce meaningful
components. For
example, a person’s
last name attribute
cannot be meaningfully
subdivided.

atomicity
Not being able to be
divided into smaller
units.

granularity
The level of detail
represented by the
values stored in a
table’s row. Data stored
at its lowest level of
granularity is said to be
atomic data.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 217

their lowest level of granularity? In other words, does ASSIGN_HOURS represent the
hourly total, daily total, weekly total, monthly total, or yearly total? Clearly, ASSIGN_
HOURS requires more careful definition. In this case, the relevant question would be as
follows: for what time frame—hour, day, week, month, and so on—do you want to record
the ASSIGN_HOURS data?

For example, assume that the combination of EMP_NUM and PROJ_NUM is an
acceptable (composite) primary key in the ASSIGNMENT table. That primary key
is useful in representing only the total number of hours an employee worked on a
project since its start. Using a surrogate primary key such as ASSIGN_NUM pro-
vides lower granularity and yields greater flexibility. For example, assume that the
EMP_NUM and PROJ_NUM combination is used as the primary key, and then an
employee makes two “hours worked” entries in the ASSIGNMENT table. That action
violates the entity integrity requirement. Even if you add the ASSIGN_DATE as part
of a composite PK, an entity integrity violation is still generated if any employee
makes two or more entries for the same project on the same day. (The employee
might have worked on the project for a few hours in the morning and then worked
on it again later in the day.) The same data entry yields no problems when ASSIGN_
NUM is used as the primary key.

Maintain Historical Accuracy Writing the job charge per hour into the ASSIGN-
MENT table is crucial to maintaining the historical accuracy of the table’s data. It would
be appropriate to name this attribute ASSIGN_CHG_HOUR. Although this attribute
would appear to have the same value as JOB_CHG_HOUR, this is true only if the JOB_
CHG_HOUR value remains the same forever. It is reasonable to assume that the job
charge per hour will change over time. However, suppose that the charges to each project
were calculated and billed by multiplying the hours worked from the ASSIGNMENT
table by the charge per hour from the JOB table. Those charges would always show the
current charge per hour stored in the JOB table rather than the charge per hour that was
in effect at the time of the assignment.

Evaluate Using Derived Attributes Finally, you can use a derived attribute in the
ASSIGNMENT table to store the actual charge made to a project. That derived attribute,
named ASSIGN_CHARGE, is the result of multiplying ASSIGN_HOURS by ASSIGN_
CHG_HOUR. This creates a transitive dependency such that:

(ASSIGN_CHARGE + ASSIGN_HOURS) → ASSIGN_CHG_HOUR

From a system functionality point of view, such derived attribute values can be cal-
culated when they are needed to write reports or invoices. However, storing the derived
attribute in the table makes it easy to write the application software to produce the desired
results. Also, if many transactions must be reported and/or summarized, the availability

In an ideal database design, the level of desired granularity would be determined during
the conceptual design or while the requirements were being gathered. However, as you
have already seen in this chapter, many database designs involve the refinement of exist-
ing data requirements, thus triggering design modifications. In a real-world environment,
changing granularity requirements might dictate changes in primary key selection, and
those changes might ultimately require the use of surrogate keys.

Note

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218 Part 2 Design Concepts

of the derived attribute will save reporting time. (If the calculation is done at the time of
data entry, it will be completed when the end user presses the Enter key, thus speeding
up the process.) Review Chapter 4 for a discussion of the implications of storing derived
attributes in a database table.

The enhancements described in the preceding sections are illustrated in the tables and
dependency diagrams shown in Figure 6.6.

FIGURE 6.6 THE COMPLETED DATABASE

Table name: PROJECT Table name: JOB

Database name: Ch06_ConstructCoTable name: JOB

Table name: ASSIGNMENT

ASSIGN_NUM ASSIGN_DATE PROJ_NUM EMP_NUM ASSIGN_HOURS ASSIGN_CHG_HOUR ASSIGN_CHARGE

Table name: ASSIGNMENT

Table name: PROJECT

PROJ_NUM PROJ_NAME EMP_NUM JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 219

Figure 6.6 is a vast improvement over the original database design. If the application soft-
ware is designed properly, the most active table (ASSIGNMENT) requires the entry of only
the PROJ_NUM, EMP_NUM, and ASSIGN_HOURS values. The values for the attributes
ASSIGN_NUM and ASSIGN_DATE can be generated by the application. For example, the
ASSIGN_NUM can be created by using a counter, and the ASSIGN_DATE can be the system
date read by the application and automatically entered into the ASSIGNMENT table. In addi-
tion, the application software can automatically insert the correct ASSIGN_CHG_HOUR
value by writing the appropriate JOB table’s JOB_CHG_HOUR value into the ASSIGN-
MENT table. (The JOB and ASSIGNMENT tables are related through the JOB_CODE attri-
bute.) If the JOB table’s JOB_CHG_HOUR value changes, the next insertion of that value
into the ASSIGNMENT table will reflect the change automatically. The table structure thus
minimizes the need for human intervention. In fact, if the system requires the employees to
enter their own work hours, they can scan their EMP_NUM into the ASSIGNMENT table
by using a magnetic card reader that enters their identity. Thus, the ASSIGNMENT table’s
structure can set the stage for maintaining some desired level of security.

6-5 Surrogate Key Considerations
Although this design meets the vital entity and referential integrity requirements, the
designer must still address some concerns. For example, a composite primary key might
become too cumbersome to use as the number of attributes grows. (It becomes difficult
to create a suitable foreign key when the related table uses a composite primary key. In
addition, a composite primary key makes it more difficult to write search routines.) Or,
a primary key attribute might simply have too much descriptive content to be usable—
which is why the JOB_CODE attribute was added to the JOB table to serve as its primary
key. When the primary key is considered to be unsuitable for some reason, designers use
surrogate keys, as discussed in the previous chapter.

FIGURE 6.6 THE COMPLETED DATABASE (CONTINUED)

Table name: EMPLOYEE

EMP_NUM EMP_LNAME EMP_FNAME EMP_INITIAL EMP_HIREDATE JOB_CODE

Table name: EMPLOYEE

Database name: Ch06_ConstructCo

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220 Part 2 Design Concepts

At the implementation level, a surrogate key is a system-defined attribute generally
created and managed via the DBMS. Usually, a system-defined surrogate key is numeric,
and its value is automatically incremented for each new row. For example, Microsoft
Access uses an AutoNumber data type, Microsoft SQL Server uses an identity column,
and Oracle uses a sequence object.

Recall from Section 6-4 that the JOB_CODE attribute was designated to be the JOB
table’s primary key. However, remember that the JOB_CODE attribute does not prevent
duplicate entries, as shown in the JOB table in Table 6.4.

Clearly, the data entries in Table 6.4 are inappropriate because they duplicate existing
records—yet there has been no violation of either entity integrity or referential integrity.
This problem of multiple duplicate records was created when the JOB_CODE attribute
was added as the PK. (When the JOB_DESCRIPTION was initially designated to be the
PK, the DBMS would ensure unique values for all job description entries when it was
asked to enforce entity integrity. However, that option created the problems that caused
the use of the JOB_CODE attribute in the first place!) In any case, if JOB_CODE is to
be the surrogate PK, you still must ensure the existence of unique values in the JOB_
DESCRIPTION through the use of a unique index.

Note that all of the remaining tables (PROJECT, ASSIGNMENT, and EMPLOYEE)
are subject to the same limitations. For example, if you use the EMP_NUM attribute in
the EMPLOYEE table as the PK, you can make multiple entries for the same employee. To
avoid that problem, you might create a unique index for EMP_LNAME, EMP_FNAME,
and EMP_INITIAL, but how would you then deal with two employees named Joe B.
Smith? In that case, you might use another (preferably externally defined) attribute to
serve as the basis for a unique index.

It is worth repeating that database design often involves trade-offs and the exercise of
professional judgment. In a real-world environment, you must strike a balance between
design integrity and flexibility. For example, you might design the ASSIGNMENT table
to use a unique index on PROJ_NUM, EMP_NUM, and ASSIGN_DATE if you want to
limit an employee to only one ASSIGN_HOURS entry per date. That limitation would
ensure that employees could not enter the same hours multiple times for any given date.
Unfortunately, that limitation is likely to be undesirable from a managerial point of view.
After all, if an employee works several different times on a project during any given day,
it must be possible to make multiple entries for that same employee and the same project
during that day. In that case, the best solution might be to add a new externally defined
attribute—such as a stub, voucher, or ticket number—to ensure uniqueness. In any case,
frequent data audits would be appropriate.

6-6 Higher-Level Normal Forms
Tables in 3NF will perform suitably in business transactional databases. However, higher
normal forms are sometimes useful. In this section, you will learn about a special case of
3NF, known as Boyce-Codd normal form, and about fourth normal form (4NF).

TABLE 6.4

DUPLICATE ENTRIES IN THE JOB TABLE

JOB_CODE JOB_DESCRIPTION JOB_CHG_HOUR
511 Programmer $35.75

512 Programmer $35.75

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 221

6-6a The Boyce-Codd Normal Form
A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is a
candidate key. (Recall from Chapter 3 that a candidate key has the same characteristics
as a primary key, but for some reason, it was not chosen to be the primary key.) Clearly,
when a table contains only one candidate key, the 3NF and the BCNF are equivalent. In
other words, BCNF can be violated only when the table contains more than one candi-
date key. In the previous normal form examples, tables with only one candidate key were
used to simplify the explanations. Remember, however, that multiple candidate keys are
always possible, and normalization rules focus on candidate keys, not just the primary
key. Consider the table structure shown in Figure 6.7.

The CLASS table has two candidate keys:
• CLASS_CODE
• CRS_CODE + CLASS_SECTION

The table is in 1NF because the key attributes are defined and all nonkey attributes
are determined by the key. This is true for both candidate keys. Both candidate keys have
been identified, and all of the other attributes can be determined by either candidate key.
The table is in 2NF because it is in 1NF and there are no partial dependencies on either
candidate key. Since CLASS_CODE is a single attribute candidate key, the issue of par-
tial dependencies doesn’t apply. However, the composite candidate key of CRS_CODE +
CLASS_SECTION could potentially have a partial dependency so 2NF must be evalu-
ated for that candidate key. In this case, there are no partial dependencies involving the
composite key. Finally, the table is in 3NF because there are no transitive dependencies.
Remember, because CRS_CODE + CLASS_SECTION is a candidate key, the fact that
this composite can determine the CLASS_TIME and ROOM_CODE is not a transitive
dependency. A transitive dependency exists when a nonkey attribute can determine
another nonkey attribute, and CRS_CODE + CLASS_SECTION is a key.

FIGURE 6.7 TABLES WITH MULTIPLE CANDIDATE KEYS

CLASS_CODE CRS_CODE CLASS_SECTION CLASS_TIME ROOM_CODE

Table name: CLASS

Boyce-Codd normal
form (BCNF)
A special type of third
normal form (3NF) in
which every determinant
is a candidate key. A
table in BCNF must
be in 3NF. See also
determinant.

Most designers consider the BCNF to be a special case of the 3NF. In fact, if the tech-
niques shown in this chapter are used, most tables conform to the BCNF requirements
once the 3NF is reached. So, how can a table be in 3NF and not be in BCNF? To answer
that question, you must keep in mind that a transitive dependency exists when one non-
prime attribute is dependent on another nonprime attribute.

A table is in Boyce-Codd normal form (BCNF) when every determinant in the table is
a candidate key.

Note

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222 Part 2 Design Concepts

In other words, a table is in 3NF when it is in 2NF and there are no transitive depen-
dencies, but what about a case in which one key attribute is the determinant of another key
attribute? That condition does not violate 3NF, yet it fails to meet the BCNF requirements (see
Figure 6.8) because BCNF requires that every determinant in the table be a candidate key.

Note these functional dependencies in Figure 6.8:

A + B → C, D

A + C → B, D

C → B

Notice that this structure has two candidate keys: (A + B) and (A + C). The table
structure shown in Figure 6.8 has no partial dependencies, nor does it contain transitive
dependencies. (The condition C → B indicates that one key attribute determines part of
the primary key—and that dependency is not transitive or partial because the dependent
is a prime attribute!) Thus, the table structure in Figure 6.8 meets the 3NF requirements,
although the condition C → B causes the table to fail to meet the BCNF requirements.

To convert the table structure in Figure 6.8 into table structures that are in 3NF and
in BCNF, first change the primary key to A + C. This change is appropriate because the
dependency C → B means that C is effectively a superset of B. At this point, the table
is in 1NF because it contains a partial dependency, C → B. Next, follow the standard
decomposition procedures to produce the results shown in Figure 6.9.

To see how this procedure can be applied to an actual problem, examine the sample
data in Table 6.5.

Table 6.5 reflects the following conditions:
• Each CLASS_CODE identifies a class uniquely. This condition illustrates the case in

which a course might generate many classes. For example, a course labeled INFS 420
might be taught in two classes (sections), each identified by a unique code to facilitate
registration. Thus, the CLASS_CODE 32456 might identify INFS 420, class section
1, while the CLASS_CODE 32457 might identify INFS 420, class section 2. Or, the
CLASS_CODE 28458 might identify QM 362, class section 5.

• A student can take many classes. Note, for example, that student 125 has taken both
21334 and 32456, earning the grades A and C, respectively.

• A staff member can teach many classes, but each class is taught by only one staff
member. Note that staff member 20 teaches the classes identified as 32456 and 28458.
The structure shown in Table 6.5 is reflected in Panel A of Figure 6.10:

STU_ID + STAFF_ID → CLASS_CODE, ENROLL_GRADE

CLASS_CODE → STAFF_ID

FIGURE 6.8 A TABLE THAT IS IN 3NF BUT NOT IN BCNF

A B C D

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 223

Panel A of Figure 6.10 shows a structure that is clearly in 3NF, but the table repre-
sented by this structure has a major problem because it is trying to describe two things:
staff assignments to classes and student enrollment information. Such a dual-purpose
table structure will cause anomalies. For example, if a different staff member is assigned
to teach class 32456, two rows will require updates, thus producing an update anomaly.
Also, if student 135 drops class 28458, information about who taught that class is lost,
thus producing a deletion anomaly. The solution to the problem is to decompose the
table structure, following the procedure outlined earlier. The decomposition of Panel B
shown in Figure 6.10 yields two table structures that conform to both 3NF and BCNF
requirements.

TABLE 6.5

SAMPLE DATA FOR A BCNF CONVERSION

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE
125 25 21334 A

125 20 32456 C

135 20 28458 B

144 25 27563 C

144 20 32456 B

FIGURE 6.9 DECOMPOSITION TO BCNF

A B C D

A C B D

A C D C B

3NF, but not BCNF

1NF

Partial dependency

3NF and BCNF 3NF and BCNF

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224 Part 2 Design Concepts

Remember that a table is in BCNF when every determinant in that table is a candi-
date key. Therefore, when a table contains only one candidate key, 3NF and BCNF are
equivalent.

6-6b Fourth Normal Form (4NF)
You might encounter poorly designed databases, or you might be asked to convert
spreadsheets into a database format in which multiple multivalued attributes exist. For
example, consider the possibility that an employee can have multiple assignments and
can also be involved in multiple service organizations. Suppose employee 10123 vol-
unteers for the Red Cross and United Way. In addition, the same employee might be
assigned to work on three projects: 1, 3, and 4. Figure 6.11 illustrates how that set of facts
can be recorded in very different ways.

FIGURE 6.10 ANOTHER BCNF DECOMPOSITION

CLASS_CODE STAFF_IDSTU_ID CLASS_CODE ENROLL_GRADE

STU_ID STAFF_ID CLASS_CODE ENROLL_GRADE

Panel A: 3NF, but not BCNF

Panel B: 3NF and BCNF

FIGURE 6.11 TABLES WITH MULTIVALUED DEPENDENCIES

Table name: VOLUNTEER_V1

Database name: Ch06_Service

Table name: VOLUNTEER_V3

Table name: VOLUNTEER_V2

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 225

There is a problem with the tables in Figure 6.11. The attributes ORG_CODE
and ASSIGN_NUM each may have many different values. In normalization ter-
minology, this situation is referred to as a multivalued dependency, which occurs
when one key determines multiple values of two other attributes and those attributes
are independent of each other. (One employee can have many service entries and
many assignment entries. Therefore, one EMP_NUM can determine multiple val-
ues of ORG_CODE and multiple values of ASSIGN_NUM; however, ORG_CODE
and ASSIGN_NUM are independent of each other.) The presence of a multivalued
dependency means that if table versions 1 and 2 are implemented, the tables are
likely to contain quite a few null values; in fact, the tables do not even have a via-
ble candidate key. (The EMP_NUM values are not unique, so they cannot be PKs.
No combination of the attributes in table versions 1 and 2 can be used to create a
PK because some of them contain nulls.) Such a condition is not desirable, espe-
cially when there are thousands of employees, many of whom may have multiple job
assignments and many service activities. Version 3 at least has a PK, but it is com-
posed of all the attributes in the table. In fact, version 3 meets 3NF requirements, yet
it contains many redundancies that are clearly undesirable.

The solution is to eliminate the problems caused by the multivalued dependency. You
do this by creating new tables for the components of the multivalued dependency. In
this example, the multivalued dependency is resolved and eliminated by creating the
ASSIGNMENT and SERVICE_V1 tables depicted in Figure 6.12. Those tables are said
to be in 4NF.

FIGURE 6.12 A SET OF TABLES IN 4NF

The relational diagram

Table name: EMPLOYEE

Database name: CH06_Service

Table name: PROJECT

Table name: ORGANIZATION

Table name: ASSIGNMENT

Table name: SERVICE_V1

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 Part 2 Design Concepts

If you follow the proper design procedures illustrated in this book, you should not
encounter the problem shown in Figure 6.11. Specifically, the discussion of 4NF is largely
academic if you make sure that your tables conform to the following two rules:
1. All attributes must be dependent on the primary key, but they must be independent

of each other.
2. No row may contain two or more multivalued facts about an entity.

6-7 Normalization and Database Design
The tables shown in Figure 6.6 illustrate how normalization procedures can be used to
produce good tables from poor ones. You will likely have ample opportunity to put this
skill into practice when you begin to work with real-world databases. Normalization
should be part of the design process. Therefore, make sure that proposed entities meet
the required normal form before the table structures are created. Keep in mind that if
you follow the design procedures discussed in Chapters 3 and 4, the likelihood of data
anomalies will be small. However, even the best database designers are known to make
occasional mistakes that come to light during normalization checks. Also, many of the
real-world databases you encounter will have been improperly designed or burdened
with anomalies if they were improperly modified over the course of time. That means
you might be asked to redesign and modify existing databases that are, in effect, anomaly
traps. Therefore, you should be aware of good design principles and procedures as well
as normalization procedures.

First, an ERD is created through an iterative process. You begin by identifying rele-
vant entities, their attributes, and their relationships. Then you use the results to identify
additional entities and attributes. The ERD provides the big picture, or macro view, of an
organization’s data requirements and operations.

Second, normalization focuses on the characteristics of specific entities; that is, nor-
malization represents a micro view of the entities within the ERD. Also, as you learned
in the previous sections of this chapter, the normalization process might yield additional
entities and attributes to be incorporated into the ERD. Therefore, it is difficult to sep-
arate normalization from ER modeling; the two techniques are used in an iterative and
incremental process.

To understand the proper role of normalization in the design process, you should
reexamine the operations of the contracting company whose tables were normalized
in the preceding sections. Those operations can be summarized by using the following
business rules:
• The company manages many projects.
• Each project requires the services of many employees.
• An employee may be assigned to several different projects.
• Some employees are not assigned to a project and perform duties not specifically

related to a project. Some employees are part of a labor pool, to be shared by all proj-
ect teams. For example, the company’s executive secretary would not be assigned to
any one particular project.

A table is in fourth normal form (4NF) when it is in 3NF and has no multivalued
dependencies.

Note

fourth normal form
(4NF)
A table is in 4NF if it is
in 3NF and contains no
multiple independent
sets of multivalued
dependencies.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 227

• Each employee has a single primary job classification, which determines the hourly
billing rate.

• Many employees can have the same job classification. For example, the company
employs more than one electrical engineer.
Given that simple description of the company’s operations, two entities and their

attributes are initially defined:
• PROJECT (PROJ_NUM, PROJ_NAME)
• EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL, JOB_

DESCRIPTION, JOB_CHG_HOUR)
Those two entities constitute the initial ERD shown in Figure 6.13.

After creating the initial ERD shown in Figure 6.13, the normal forms are defined:
• PROJECT is in 3NF and needs no modification at this point.
• EMPLOYEE requires additional scrutiny. The JOB_DESCRIPTION attribute defines

job classifications such as Systems Analyst, Database Designer, and Programmer. In
turn, those classifications determine the billing rate, JOB_CHG_HOUR. Therefore,
EMPLOYEE contains a transitive dependency.
The removal of EMPLOYEE’s transitive dependency yields three entities:

• PROJECT (PROJ_NUM, PROJ_NAME)
• EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL,

JOB_CODE)
• JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

Because the normalization process yields an additional entity (JOB), the initial ERD
is modified as shown in Figure 6.14.

To represent the M:N relationship between EMPLOYEE and PROJECT, you might
think that two 1:M relationships could be used—an employee can be assigned to many
projects, and each project can have many employees assigned to it. (See Figure 6.15.)
Unfortunately, that representation yields a design that cannot be correctly implemented.

Because the M:N relationship between EMPLOYEE and PROJECT cannot be imple-
mented, the ERD in Figure 6.15 must be modified to include the ASSIGNMENT entity
to track the assignment of employees to projects, thus yielding the ERD shown in Fig-
ure 6.16. The ASSIGNMENT entity in Figure 6.16 uses the primary keys from the enti-
ties PROJECT and EMPLOYEE to serve as its foreign keys. However, note that in this
implementation, the ASSIGNMENT entity’s surrogate primary key is ASSIGN_NUM,
to avoid the use of a composite primary key. Therefore, the “enters” relationship between
EMPLOYEE and ASSIGNMENT and the “requires” relationship between PROJECT and
ASSIGNMENT are shown as weak or nonidentifying.

FIGURE 6.13 INITIAL CONTRACTING COMPANY ERD

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

228 Part 2 Design Concepts

In Figure 6.16, the ASSIGN_HOURS attribute is assigned to the composite entity
named ASSIGNMENT. Because you will likely need detailed information about each
project’s manager, the creation of a “manages” relationship is useful. The “manages”
relationship is implemented through the foreign key in PROJECT. Finally, some addi-
tional attributes may be created to improve the system’s ability to generate additional
information. For example, you may want to include the date the employee was hired
(EMP_HIREDATE) to keep track of worker longevity. Based on this last modification,
the model should include four entities and their attributes:

PROJECT (PROJ_NUM, PROJ_NAME, EMP_NUM)

 EMPLOYEE (EMP_NUM, EMP_LNAME, EMP_FNAME, EMP_INITIAL,
EMP_HIREDATE, JOB_CODE)

JOB (JOB_CODE, JOB_DESCRIPTION, JOB_CHG_HOUR)

ASSIGNMENT (ASSIGN_NUM, ASSIGN_DATE, PROJ_NUM, EMP_NUM,
ASSIGN_HOURS, ASSIGN_CHG_HOUR, ASSIGN_CHARGE)

FIGURE 6.14 MODIFIED CONTRACTING COMPANY ERD

FIGURE 6.15 INCORRECT M:N RELATIONSHIP REPRESENTATION

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 229

The design process is now on the right track. The ERD represents the operations
accurately, and the entities now reflect their conformance to 3NF. The combination of
normalization and ER modeling yields a useful ERD, whose entities may now be trans-
lated into appropriate table structures. In Figure 6.15, note that PROJECT is optional
to EMPLOYEE in the “manages” relationship. This optionality exists because not all
employees manage projects. The final database contents are shown in Figure 6.17.

6-8 Denormalization
It is important to remember that the optimal relational database implementation requires that
all tables be at least in third normal form (3NF). A good relational DBMS excels at manag-
ing normalized relations—that is, relations void of any unnecessary redundancies that might
cause data anomalies. Although the creation of normalized relations is an important database
design goal, it is only one of many such goals. Good database design also considers processing
(or reporting) requirements and processing speed. The problem with normalization is that as
tables are decomposed to conform to normalization requirements, the number of database
tables expands. Therefore, in order to generate information, data must be put together from
various tables. Joining a large number of tables takes additional input/output (I/O) operations
and processing logic, thereby reducing system speed. Most relational database systems are
able to handle joins very efficiently. However, rare and occasional circumstances may allow
some degree of denormalization so processing speed can be increased.

Keep in mind that the advantage of higher processing speed must be carefully weighed
against the disadvantage of data anomalies. On the other hand, some anomalies are of
only theoretical interest. For example, should people in a real-world database environ-
ment worry that a ZIP_CODE determines CITY in a CUSTOMER table whose primary
key is the customer number? Is it really practical to produce a separate table for

ZIP (ZIP_CODE, CITY)

to eliminate a transitive dependency from the CUSTOMER table? (Perhaps your
answer to that question changes if you are in the business of producing mailing lists.)
As explained earlier, the problem with denormalized relations and redundant data is
that data integrity could be compromised due to the possibility of insert, update, and

FIGURE 6.16 FINAL CONTRACTING COMPANY ERD

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230 Part 2 Design Concepts

deletion anomalies. The advice is simple: use common sense during the normalization
process.

Furthermore, the database design process could, in some cases, introduce some
small degree of redundant data in the model, as seen in the previous example. This, in
effect, creates “denormalized” relations. Table 6.6 shows some common examples of data
redundancy that are generally found in database implementations.

A more comprehensive example of the need for denormalization due to reporting
requirements is the case of a faculty evaluation report in which each row lists the scores
obtained during the last four semesters taught. (See Figure 6.18.)

Although this report seems simple enough, the problem is that the data is stored in
a normalized table in which each row represents a different score for a given faculty
member in a given semester. (See Figure 6.19.)

The difficulty of transposing multirow data to multicolumn data is compounded by
the fact that the last four semesters taught are not necessarily the same for all faculty
members. Some might have taken sabbaticals, some might have had research appoint-
ments, some might be new faculty with only two semesters on the job, and so on. To
generate this report, the two tables in Figure 6.18 were used. The EVALDATA table is

FIGURE 6.17 THE IMPLEMENTED DATABASE

Table name: EMPLOYEE

Table name: JOB

Table name: ASSIGNMENT

Database name: Ch06_ConstructCo

Table name: PROJECT

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 231

the master data table containing the evaluation scores for each faculty member for each
semester taught; this table is normalized. The FACHIST table contains the last four data
points—that is, evaluation score and semester—for each faculty member. The FACHIST
table is a temporary denormalized table created from the EVALDATA table via a series of
queries. (The FACHIST table is the basis for the report shown in Figure 6.18.)

As shown in the faculty evaluation report, the conflicts between design efficiency,
information requirements, and performance are often resolved through compromises
that may include denormalization. In this case, and assuming there is enough storage
space, the designer’s choices could be narrowed down to:
• Store the data in a permanent denormalized table. This is not the recommended solu-

tion because the denormalized table is subject to data anomalies (insert, update, and
delete). This solution is viable only if performance is an issue.

• Create a temporary denormalized table from the permanent normalized table(s). The
denormalized table exists only as long as it takes to generate the report; it disappears after
the report is produced. Therefore, there are no data anomaly problems. This solution is
practical only if performance is not an issue and there are no other viable processing options.
As shown, normalization purity is often difficult to sustain in the modern database environ-

ment. You will learn in Chapter 13, Business Intelligence and Data Warehouses, that lower

TABLE 6.6

COMMON DENORMALIZATION EXAMPLES

CASE EXAMPLE RATIONALE AND CONTROLS
Redundant data Storing ZIP and CITY attributes in the

AGENT table when ZIP determines CITY
(see Figure 2.2)

Avoid extra join operations
Program can validate city (drop-down box)
based on the zip code

Derived data Storing STU_HRS and STU_CLASS (student
classification) when STU_HRS determines
STU_CLASS (see Figure 3.28)

Avoid extra join operations
Program can validate classification (lookup)
based on the student hours

Preaggregated data
(also derived data)

Storing the student grade point
average (STU_GPA) aggregate value in
the STUDENT table when this can be
calculated from the ENROLL and COURSE
tables (see Figure 3.28)

Avoid extra join operations
Program computes the GPA every time a
grade is entered or updated
STU_GPA can be updated only via
administrative routine

Information
requirements

Using a temporary denormalized table
to hold report data; this is required when
creating a tabular report in which the
columns represent data that are stored in
the table as rows (see Figures 6.17 and 6.18)

Impossible to generate the data required
by the report using plain SQL
No need to maintain table
Temporary table is deleted once report is done
Processing speed is not an issue

FIGURE 6.18 THE FACULTY EVALUATION REPORT

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232 Part 2 Design Concepts

normalization forms occur (and are even required) in specialized databases known as data
warehouses. Such specialized databases reflect the ever-growing demand for greater scope
and depth in the data on which decision support systems increasingly rely. You will discover
that the data warehouse routinely uses 2NF structures in its complex, multilevel, multisource
data environment. In short, although normalization is very important, especially in the
so-called production database environment, 2NF is no longer disregarded as it once was.

Although 2NF tables cannot always be avoided, the problem of working with tables
that contain partial and/or transitive dependencies in a production database environment
should not be minimized. Aside from the possibility of troublesome data anomalies being
created, unnormalized tables in a production database tend to suffer from these defects:
• Data updates are less efficient because programs that read and update tables must deal

with larger tables.
• Indexing is more cumbersome. It is simply not practical to build all of the indexes

required for the many attributes that might be located in a single unnormalized table.
• Unnormalized tables yield no simple strategies for creating virtual tables known as

views. You will learn how to create and use views in Chapter 8, Advanced SQL.
Remember that good design cannot be created in the application programs that use a

database. Also keep in mind that unnormalized database tables often lead to various data
redundancy disasters in production databases, such as the problems examined thus far.
In other words, use denormalization cautiously and make sure that you can explain why
the unnormalized tables are a better choice in certain situations than their normalized
counterparts.

6-9 Data-Modeling Checklist
In the chapters of Part 2, you have learned how data modeling translates a specific real-world
environment into a data model that represents the real-world data, users, processes, and
interactions. The modeling techniques you have learned thus far give you the tools needed
to produce successful database designs. However, just as any good pilot uses a checklist to
ensure that all is in order for a successful flight, the data-modeling checklist shown in Table
6.7 will help ensure that you perform data-modeling tasks successfully based on the concepts
and tools you have learned in this text.

FIGURE 6.19 THE EVALDATA AND FACHIST TABLES

Table name: FACHIST Database name: Ch06_EVALTable name: EVALDATA

Denormalized

Normalized

Repeating Group

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Chapter 6 Normalization of Database Tables 233

You can also find this data-modeling checklist on the inside front cover of this book for
easy reference.

Note

TABLE 6.7

DATA-MODELING CHECKLIST

BUSINESS RULES
• Properly document and verify all business rules with the end users.
• Ensure that all business rules are written precisely, clearly, and simply. The business rules must help identify entities,

attributes, relationships, and constraints.
• Identify the source of all business rules, and ensure that each business rule is justified, dated, and signed off by an

approving authority.

DATA MODELING
Naming conventions: All names should be limited in length (database-dependent size).
• Entity names:

• Should be nouns that are familiar to business and should be short and meaningful
• Should document abbreviations, synonyms, and aliases for each entity
• Should be unique within the model
• For composite entities, may include a combination of abbreviated names of the entities linked through the composite entity

• Attribute names:
• Should be unique within the entity
• Should use the entity abbreviation as a prefix
• Should be descriptive of the characteristic
• Should use suffixes such as _ID, _NUM, or _CODE for the PK attribute
• Should not be a reserved word
• Should not contain spaces or special characters such as @, !, or &

• Relationship names:
• Should be active or passive verbs that clearly indicate the nature of the relationship

Entities:
• Each entity should represent a single subject.
• Each entity should represent a set of distinguishable entity instances.
• All entities should be in 3NF or higher. Any entities below 3NF should be justified.
• The granularity of the entity instance should be clearly defined.
• The PK should be clearly defined and support the selected data granularity.

Attributes:
• Should be simple and single-valued (atomic data)
• Should document default values, constraints, synonyms, and aliases
• Derived attributes should be clearly identified and include source(s)
• Should not be redundant unless this is required for transaction accuracy, performance, or maintaining a history
• Nonkey attributes must be fully dependent on the PK attribute

Relationships:
• Should clearly identify relationship participants
• Should clearly define participation, connectivity, and document cardinality

ER model:
• Should be validated against expected processes: inserts, updates, and deletions
• Should evaluate where, when, and how to maintain a history
• Should not contain redundant relationships except as required (see attributes)
• Should minimize data redundancy to ensure single-place updates
• Should conform to the minimal data rule: All that is needed is there, and all that is there is needed.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234 Part 2 Design Concepts

Summary

• Normalization is a technique used to design tables in which data redundancies are
minimized. The first three normal forms (1NF, 2NF, and 3NF) are the most com-
mon. From a structural point of view, higher normal forms are better than lower
normal forms because higher normal forms yield relatively fewer data redundancies
in the database. Almost all business designs use 3NF as the ideal normal form. A
special, more restricted 3NF known as Boyce-Codd normal form, or BCNF, is also
used.

• A table is in 1NF when all key attributes are defined and all remaining attributes are
dependent on the primary key. However, a table in 1NF can still contain both par-
tial and transitive dependencies. A partial dependency is one in which an attribute
is functionally dependent on only a part of a multiattribute primary key. A transi-
tive dependency is one in which an attribute is functionally dependent on another
nonkey attribute. A table with a single-attribute primary key cannot exhibit partial
dependencies.

• A table is in 2NF when it is in 1NF and contains no partial dependencies. Therefore,
a 1NF table is automatically in 2NF when its primary key is based on only a single
attribute. A table in 2NF may still contain transitive dependencies.

• A table is in 3NF when it is in 2NF and contains no transitive dependencies. Given
that definition, the Boyce-Codd normal form (BCNF) is merely a special 3NF case in
which all determinant keys are candidate keys. When a table has only a single candi-
date key, a 3NF table is automatically in BCNF.

• A table that is not in 3NF may be split into new tables until all of the tables meet the
3NF requirements.

• Normalization is an important part—but only a part—of the design process. As
entities and attributes are defined during the ER modeling process, subject each
entity (set) to normalization checks and form new entities (sets) as required.
Incorporate the normalized entities into the ERD and continue the iterative ER
process until all entities and their attributes are defined and all equivalent tables
are in 3NF.

• A table in 3NF might contain multivalued dependencies that produce either numer-
ous null values or redundant data. Therefore, it might be necessary to convert a 3NF
table to the fourth normal form (4NF) by splitting the table to remove the multivalued
dependencies. Thus, a table is in 4NF when it is in 3NF and contains no multivalued
dependencies.

• The larger the number of tables, the more additional I/O operations and processing
logic you need to join them. Therefore, tables are sometimes denormalized to yield
less I/O in order to increase processing speed. Unfortunately, with larger tables, you
pay for the increased processing speed by making the data updates less efficient, by
making indexing more cumbersome, and by introducing data redundancies that are
likely to yield data anomalies. In the design of production databases, use denormal-
ization sparingly and cautiously.

• The data-modeling checklist provides a way for the designer to check that the ERD
meets a set of minimum requirements.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

