
Module v

Distributed Databases

A distributed database is basically a database
that is not limited to one system, it is spread over
different sites, i.e, on multiple computers or over
a network of computers.

 A distributed database system is located on
various sites that don’t share physical
components. This may be required when a
particular database needs to be accessed by
various users globally.

It needs to be managed such that for the users it
looks like one single database.

Homogeneous and Heterogeneous Databases

In a homogeneous distributed database system, all
sites have identical database management system
software, are aware of one another, and agree to
cooperate in processing users’ requests.

In contrast, in a heterogeneous distributed
database, different sites may use different
schemas, and different database-management
system software. The sites may not be aware of
one another, and they may provide only limited
facilities for cooperation in transaction processing.

Distributed Data Storage

Consider a relation r that is to be stored in the
database. There are two approaches
to storing this relation in the distributed database:
• Replication. The system maintains several
identical replicas (copies) of the relation, and stores
each replica at a different site. The alternative to
replication is to store only one copy of relation r.
• Fragmentation. The system partitions the
relation into several fragments, and stores each
fragment at a different site.

Fragmentation and replication can be combined:
A relation can be partitioned into several
fragments and there may be several replicas of
each fragment

Data Replication

If relation r is replicated, a copy of relation r is
stored in two or more sites. In the most extreme
case, we have full replication, in which a copy is
stored in every site in the system.
There are a number of advantages and
disadvantages to replication.

Availability: If one of the sites containing relation
r fails, then the relation r can be found in another
site. Thus, the system can continue to process
queries
involving r, despite the failure of one site

Increased parallelism.
 In the case where the majority of accesses to the

relation r result in only the reading of the relation,
then several sites can process
queries involving r in parallel. The more replicas
of r there are, the greater the chance that the
needed data will be found in the site where the
transaction
is executing. Hence, data replication minimizes
movement of data between
sites.

Increased overhead on update.
The system must ensure that all replicas of a

relation r are consistent; otherwise, erroneous
computations may result. Thus,
whenever r is updated, the update must be
propagated to all sites containing replicas. The
result is increased overhead. For example, in a
banking system, where account information is
replicated in various sites, it is necessary to ensure
that the balance in a particular account agrees in
all sites.

We can simplify the management of replicas of
relation r by choosing one of them as the
primary copy of r.

For example, in a banking system, an account
can be associated with the site in which the
account has been opened.

Data Fragmentation

If relation r is fragmented, r is divided into a number of
fragments r1, r2, . . . , rn. These fragments contain
sufficient information to allow reconstruction of the
original relation r.

There are two different schemes for fragmenting a
relation: horizontal fragmentation and vertical
fragmentation.

Horizontal fragmentation splits the relation by
assigning each tuple of r to one or more fragments.
Vertical
fragmentation splits the relation by decomposing the
scheme R of relation r.

In horizontal fragmentation, a relation r is
partitioned into a number of subsets, r1, r2, . . . ,
rn. Each tuple of relation r must belong to at
least one of the fragments, so that the original
relation can be reconstructed, if needed.

the account relation can be divided into several
different fragments, each of which consists of
tuples of accounts belonging to a particular
branch.

a horizontal fragment can be defined as a
selection on the global relation r. That is, we use
a predicate Pi to construct fragment ri :

We reconstruct the relation r by taking the union
of all fragments; that is:

vertical fragmentation is the same as
decomposition. Vertical fragmentation of r(R)
involves the definition of several subsets of
attributes R1, R2, . . . , Rn of the schema R so that:
R = R1 R2 · · · R∪ ∪ ∪

Each fragment ri of r is defined by

we can reconstruct relation
r from the fragments by taking the natural join:

One way of ensuring that the relation r can be
reconstructed is to include the primary-key
attributes of R in each Ri . More generally, any
superkey can be used.
It is often convenient to add a special attribute,
called a tuple-id, to the schema R

Transparency

The user of a distributed database system should
not be required to know where the data are
physically located nor how the data can be
accessed at the specific local site. This
characteristic, called data transparency, can take
several forms:

Fragmentation transparency. Users are not
required to know how a relation has been
fragmented.

Replication transparency. Users view each data
object as logically unique. The distributed system may
replicate an object to increase either system
performance or data availability. Users do not have to
be concerned with what data objects have been
replicated, or where replicas have been placed.

Location transparency. Users are not required to
know the physical location of the data. The distributed
database system should be able to find any data
as long as the data identifier is supplied by the user
transaction.

Data items—such as relations, fragments, and
replicas—must have unique names. This property
is easy to ensure in a centralized database. In a
distributed database, however, we must take care
to ensure that two sites do not use the same
name for distinct data items.

One solution to this problem is to require all
names to be registered in a central name server.
The name server helps to ensure that the same
name does not get used for different data items.

The database system can create a set of
alternative
names, or aliases, for data items. A user may
thus refer to data items by simple names that are
translated by the system to complete names.

Distributed Transactions

Access to the various data items in a distributed
system is usually accomplished through
transactions, which must preserve the ACID
properties .

There are two types of transaction that we need
to consider. The local transactions are those
that access and update data in only one local
database; the global transactions are those that
access and update data in several local
databases.

System Structure

Each site has its own local transaction manager,
whose function is to ensure the ACID properties of
those transactions that execute at that site. The
various transaction managers cooperate to execute
global transactions.

each site contains two subsystems
The transaction manager manages the execution of

those transactions (or subtransactions) that access
data stored in a local site.

The transaction coordinator coordinates the
execution of the various transactions (both local and
global) initiated at that site.

Each transaction manager is responsible for:
• Maintaining a log for recovery purposes.

 • Participating in an appropriate concurrency-
control scheme to coordinate the
concurrent execution of the transactions
executing at that site.

the coordinator is responsible for:
• Starting the execution of the transaction.
• Breaking the transaction into a number of sub
transactions and distributing these
subtransactions to the appropriate sites for
execution.
• Coordinating the termination of the
transaction, which may result in the transaction
being committed at all sites or aborted at all
sites.

System Failure Modes

A distributed system may suffer from the same
types of failure that a centralized system does

• Failure of a site.
• Loss of messages.
 • Failure of a communication link.
• Network partition.

Object-BasedDatabases

complex application domains require
correspondingly complex data types, such as
nested record structures, multivalued attributes,
and inheritance, which are supported by
traditional programming languages.

The object-relational data model extends the
relational data model by providing a richer type
system including complex data types and object
orientation.

Object-relational database systems, that is,
database systems based on the object-relation
model, provide a convenient migration path for
users
of relational databases who wish to use object-
oriented features.

Two approaches are used
1. Build an object-oriented database system, that is, a
database system that natively supports an object-
oriented type system, and allows direct access to
data from an object-oriented programming language
using the native type system of the language.
2. Automatically convert data from the native type
system of the programming language to a relational
representation, and vice versa. Data conversion is
specified using an object-relational mapping.

Complex Data Types

Traditional database applications have
conceptually simple data types. The basic data
items are records that are fairly small and whose
fields are atomic.

Consider, for example, addresses.
 While an entire address could be viewed as an

atomic data item of type string, this view would
hide details such as the street address, city, state,
and postal code, which could be of interest to
queries.

On the other hand, if an address were represented by
breaking it into the components (street address, city,
state, and postal code), writing queries would be more
complicated since they would have to mention each field.

A better alternative is to allow structured data types that
allow a type address with subparts street address, city,
state, and postal code.

With complex type systems we can represent E-R model
concepts, such as composite attributes, multivalued
attributes, generalization, and specialization
directly, without a complex translation to the relational
model.

Rather than view a database as a set of records,
users of certain applications view it as a set of
objects (or entities).

Structured Types and Inheritance in SQL

Structured Types
Structured types allow composite attributes of E-

R designs to be represented directly. For
instance, we can define the following structured
type to represent a composite attribute name
with component attribute firstname and
lastname:

the following structured type can be used to
represent a composite attribute address:

Such types are called user-defined types in SQL.
The final and not final specifications are
related to subtyping,

We can now use these types to create composite
attributes in a relation, by simply declaring an
attribute to be of one of these types. For example,
we could create a table person as follows:

The components of a composite attribute can be
accessed using a “dot” notation; for instance
name.firstname returns the firstname
component of the name attribute. An access to
attribute name would return a value of the
structured type
Name.

We can also create a table whose rows are of a
user-defined type. For example, we could define
a type PersonType and create the table person as
follows:

An alternative way of defining composite attributes in
SQL is to use unnamed row types.

This definition is equivalent to the preceding table
definition, except that the attributes name and address
have unnamed types, and the rows of the table also
have an unnamed type

The following query illustrates how to access
component attributes of a composite attribute.
The query finds the last name and city of each
person.

A structured type can have methods defined on
it. We declare methods as part of the type
definition of a structured type:

Note that the for clause indicates which type this
method is for, while the keyword instance
indicates that this method executes on an
instance of the Person type. The variable self
refers to the Person instance on which the
method is invoked.

constructor functions are used to create values
of structured types. A function with the same
name as a structured type is a constructor
function
for the structured type.

we could declare a constructor for the type
Name like this

We can then use new Name(’John’, ’Smith’) to create a
value of the type Name.
We can construct a row value by listing its attributes
within parentheses.

By default every structured type has a constructor with
no arguments, which sets the attributes to their default
values. Any other constructors have to be created
explicitly. There can be more than one constructor for
the same structured type; although they have the same
name, they must be distinguishable by the number
of arguments and types of their arguments

The following statement illustrates how we can
create a new tuple in the Person relation

Type Inheritance

Suppose that we have the following type definition for
people:

We may want to store extra information in the
database about people who are students, and about
people who are teachers. Since students and teachers
are alsopeople, we can use inheritance to define the
student and teacher types in SQL:

Both Student and Teacher inherit the attributes
of Person —namely, name and address. Student
and Teacher are said to be subtypes of Person,
and Person is a supertype of Student, as well as
of Teacher .

Multiple inheritance

The SQL standard requires an extra field at the
end of the type definition,whose value is either
final or not final. The keyword final says that
subtypes may
not be created from the given type, while not
final says that subtypes may be created.

Table Inheritance

create table people of Person;
We can then define tables students and teachers

as subtables of people,

Further, when we declare students and teachers
as subtables of people, everytuple present in
students or teachers becomes implicitly present
in people. Thus,
if a query uses the table people, it will find not
only tuples directly inserted into that table, but
also tuples inserted into its subtables, namely
students and teachers.
However, only those attributes that are present in
people can be accessed by that
query.

SQL permits us to find tuples that are in people but
not in its subtables by using “only people”in place of
people in a query. The only keyword can also be
used in delete and update statements. Without the
only keyword, a delete statement on a supertable,
such as people, also deletes tuples that were
originally inserted in subtables (such as students);

delete from people where P;
would delete all tuples from the table people, as well

as its subtables students and teachers, that satisfy P

If the only keyword is added to the above
statement,
tuples that were inserted in subtables are not
affected, even if they satisfy the where clause
conditions

multiple inheritance is possible with tables,

Array and Multiset Types in SQL

SQL supports two collection types: arrays and
multisets;

a multiset is an unordered collection, where an
element may occur multiple times.

Creating and Accessing Collection Values

An array of values can be created in SQL:

Similarly, a multiset of keywords can be
constructed as

Object-Identity and Reference Types in
SQL

Object-oriented languages provide the ability to
refer to objects. An attribute of a type can be a
reference to an object of a specified type.

For example, in SQL we can define a type
Department with a field name and a field head
that is a reference to the type Person, and a table
departments of type Department, as follows:

We can omit the declaration scope people from the
type declaration and instead
make an addition to the create table statement

The referenced table must have an attribute that
stores the identifier of the tuple. We declare this
attribute, called the self-referential attribute, by
adding a ref is clause to the create table statement:

Next generation databases

CAP theorem
The CAP Theorem is comprised of three components

(hence its name) as they relate to distributed data stores:
Consistency. All reads receive the most recent write or

an error.
Availability. All reads contain data, but it might not be

the most recent.
Partition tolerance. The system continues to operate

despite network failures (ie; dropped partitions, slow
network connections, or unavailable network
connections between nodes.)

In normal operations, your data store provides all
three functions. But the CAP theorem maintains
that when a distributed database experiences a
network failure, you can provide either consistency
or availability.

In the theorem, partition tolerance is a must. The
assumption is that the system operates on a
distributed data store so the system, by nature,
operates with network partitions. Network failures
will happen, so to offer any kind of reliable service,
partition tolerance is necessary—the P of CAP.

https://codahale.com/you-cant-sacrifice-partition-tolerance/

if Partition means a break in communication
then Partition tolerance would mean that the
system should still be able to work even if there
is a partition in the system. Meaning if a node
fails to communicate, then one of the replicas of
the node should be able to retrieve the data
required by the user.

The CAP theorem states that a distributed
database system has to make a tradeoff between
Consistency and Availability when a Partition
occurs.

That leaves a decision between the other two, C
and A. When a network failure happens, one can
choose to guarantee consistency or availability:

High consistency comes at the cost of lower
availability.

High availability comes at the cost of lower
consistency.

Non-relational database

Non-relational databases (often called NoSQL
 databases) are different from traditional
relational databases in that they store their data
in a non-tabular form.

Instead, non-relational databases might be based
on data structures like documents. A document
can be highly detailed while containing a range
of different types of information in different
formats.

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained

There are several advantages to using non-
relational databases, including:

Massive dataset organization
In the age of Big Data, non-relational databases
can not only store massive quantities of
information, but they can also query these
datasets with ease. Scale and speed are crucial
advantages of non-relational databases.

Flexible database expansion
Data is not static. As more information is
collected, a non-relational database can absorb
these new data points, enriching the existing
database with new levels of granular value even
if they don’t fit the data types of previously
existing information.

Multiple data structures
Built for the cloud

MongoDB

MongoDB is an open-source document database
and leading NoSQL database.

MongoDB works on concept of collection and
document.

Rather than using the tables and fixed schemas
of a relational database management system
(RDBMS), MongoDB uses key-value storage in the
collection of documents. It also supports a
number of options for horizontal scaling in
large, production environments.

MongoDB is a NoSQL document database system
that scales well horizontally and implements
data storage through a key-value system.

MongoDB Sharding

MongoDB achieves scaling through a technique
known as “sharding”. It is the process of writing
data across different servers to distribute the read
and write load and data storage requirements

Sharding is the process of storing data records
across multiple machines and it is MongoDB’s
approach to meeting the demands of data growth.
As the size of the data increases, a single machine
may not be sufficient to store the data nor provide
an acceptable read and write throughput

Sharding solves the problem with horizontal
scaling. With sharding, you add more machines
to support data growth and the demands of read
and write operations.

MongoDB Replication

Replica Sets are a great way to replicate
MongoDB data across multiple servers and have
the database automatically failover in case of
server failure.

MongoDB sharding basics

MongoDB sharding works by creating a cluster
of MongoDB instances consisting of at least three
servers. That means sharded clusters consist of
three main components:

The shard
Mongos
Config servers

Shard

A shard is a single MongoDB instance that holds
a subset of the sharded data. Shards can be
deployed as replica sets to
increase availability and provide redundancy.
The combination of multiple shards creates a
complete data set. For example, a 2 TB data set
can be broken down into four shards, each
containing 500 GB of data from the original data
set.

https://www.bmc.com/blogs/redundancy-impact-availability/

Mongos
Mongos act as the query router providing a

stable interface between the application and the
sharded cluster. This MongoDB instance is
responsible for routing the client requests to the
correct shard.

Config Servers
Configuration servers store the metadata and the

configuration settings for the whole cluster.

The application communicates with the routers
(mongos) about the query to be executed.

The mongos instance consults the config servers
to check which shard contains the required data
set to send the query to that shard.

Finally, the result of the query will be returned
to the application.

HBase

HBase is a column-oriented non-relational
database management system that runs on top of
Hadoop Distributed File System (HDFS). HBase
provides a fault-tolerant way of storing sparse
data sets, which are common in many big data
use cases. It is well suited for real-time data
processing or random read/write access to large
volumes of data.

https://www.ibm.com/analytics/hadoop/hdfs
https://www.ibm.com/analytics/hadoop/hdfs

Unlike relational database systems, HBase does
not support a structured query language like
SQL; in fact, HBase isn’t a relational data store at
all. HBase applications are written in Java much
like a typical Apache MapReduce application.

https://www.ibm.com/analytics/relational-database
https://www.ibm.com/analytics/hadoop/mapreduce
https://www.ibm.com/analytics/hadoop/mapreduce

HBase is a column-oriented database and the
tables in it are sorted by row. The table schema
defines only column families, which are the key
value pairs. A table have multiple column
families and each column family can have any
number of columns. Subsequent column values
are stored contiguously on the disk. Each cell
value of the table has a timestamp

in an HBase:
Table is a collection of rows.
Row is a collection of column families.
Column family is a collection of columns.
Column is a collection of key value pairs.

Features of HBase
HBase is linearly scalable.
It has automatic failure support.
It provides consistent read and writes.
It integrates with Hadoop, both as a source and a

destination.
It has easy java API for client.
It provides data replication across clusters

Cassandra

Apache Cassandra is an open source, distributed
and decentralized/distributed storage system
(database), for managing very large amounts of
structured data spread out across the world. It
provides highly available service with no single
point of failure.

It is scalable, fault-tolerant, and consistent.
It is a column-oriented database.
Its distribution design is based on Amazon’s Dynamo and

its data model on Google’s Bigtable.
Created at Facebook, it differs sharply from relational

database management systems.
Cassandra implements a Dynamo-style replication model

with no single point of failure, but adds a more powerful
“column family” data model.

Cassandra is being used by some of the biggest companies
such as Facebook, Twitter, Cisco, Rackspace, ebay, Twitter,
Netflix, and more

Features of Cassandra

Elastic scalability Cassandra is highly scalable; it −
allows to add more hardware to accommodate
more customers and more data as per requirement.

Always on architecture Cassandra has no single −
point of failure and it is continuously available for
business-critical applications that cannot afford a
failure.

Fast linear-scale performance Cassandra is −
linearly scalable, i.e., it increases your throughput
as you increase the number of nodes in the cluster.
Therefore it maintains a quick response time.

Flexible data storage Cassandra accommodates all possible −
data formats including: structured, semi-structured, and
unstructured. It can dynamically accommodate changes to
your data structures according to your need.

Easy data distribution Cassandra provides the flexibility to −
distribute data where you need by replicating data across
multiple data centers.

Transaction support Cassandra supports properties like −
Atomicity, Consistency, Isolation, and Durability (ACID).

Fast writes Cassandra was designed to run on cheap −
commodity hardware. It performs blazingly fast writes and
can store hundreds of terabytes of data, without sacrificing the
read efficiency.

Components of Cassandra

Node It is the place where data is stored.−
Data center It is a collection of related nodes.−
Cluster A cluster is a component that contains −

one or more data centers.
Commit log The commit log is a crash-−

recovery mechanism in Cassandra. Every write
operation is written to the commit log.

Mem-table A mem-table is a memory-resident −
data structure. After commit log, the data will be
written to the mem-table. Sometimes, for a single-
column family, there will be multiple mem-tables.

SSTable It is a disk file to which the data is flushed −
from the mem-table when its contents reach a
threshold value.

Bloom filter These are nothing but quick, −
nondeterministic, algorithms for testing whether an
element is a member of a set. It is a special kind of
cache. Bloom filters are accessed after every query

Cassandra Query Language

users can access Cassandra through its nodes
using Cassandra Query Language (CQL). CQL
treats the database (Keyspace) as a container of
tables. Programmers use cqlsh: a prompt to
work with CQL or separate application language
drivers.

Write Operations
Every write activity of nodes is captured by the

commit logs written in the nodes. Later the data
will be captured and stored in the mem-table.
Whenever the mem-table is full, data will be
written into the SStable data file. All writes are
automatically partitioned and replicated
throughout the cluster. Cassandra periodically
consolidates the SSTables, discarding
unnecessary data.

Read Operations
During read operations, Cassandra gets values

from the mem-table and checks the bloom filter
to find the appropriate SSTable that holds the
required data.

	Slide 1
	Distributed Databases
	Homogeneous and Heterogeneous Databases
	Distributed Data Storage
	Slide 5
	Data Replication
	Slide 7
	Slide 8
	Slide 9
	Data Fragmentation
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Transparency
	Slide 16
	Slide 17
	Slide 18
	Distributed Transactions
	System Structure
	Slide 21
	Slide 22
	System Failure Modes
	Object-BasedDatabases
	Slide 25
	Slide 26
	Complex Data Types
	Slide 28
	Slide 29
	Structured Types and Inheritance in SQL
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Type Inheritance
	Slide 43
	Slide 44
	Slide 45
	Table Inheritance
	Slide 47
	Slide 48
	Slide 49
	Array and Multiset Types in SQL
	Creating and Accessing Collection Values
	Slide 52
	Object-Identity and Reference Types in SQL
	Slide 54
	Next generation databases
	Slide 56
	Slide 57
	Slide 58
	Non-relational database
	Slide 60
	Slide 61
	MongoDB
	Slide 63
	MongoDB Sharding
	Slide 65
	MongoDB Replication
	MongoDB sharding basics
	Shard
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	HBase
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Cassandra
	Slide 80
	Features of Cassandra
	Slide 82
	Components of Cassandra
	Slide 84
	Cassandra Query Language
	Slide 86
	Slide 87
	Slide 88

