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Distributed Databases

A distributed database is basically a database 
that is not limited to one system, it is spread over 
different sites, i.e, on multiple computers or over 
a network of computers.

 A distributed database system is located on 
various sites that don’t share physical 
components. This may be required when a 
particular database needs to be accessed by 
various users globally. 

It needs to be managed such that for the users it 
looks like one single database. 



Homogeneous and Heterogeneous Databases

In a homogeneous distributed database system, all 
sites have identical database management system 
software, are aware of one another, and agree to 
cooperate in processing users’ requests.

In contrast, in a heterogeneous distributed 
database, different sites may use  different 
schemas, and different database-management 
system software. The sites may not be aware of 
one another, and they may provide only limited 
facilities for cooperation in transaction processing.



Distributed Data Storage

Consider a relation r that is to be stored in the 
database. There are two approaches
to storing this relation in the distributed database:
• Replication. The system maintains several 
identical replicas (copies) of the relation, and stores 
each replica at a different site. The alternative to 
replication is to store only one copy of relation r.
• Fragmentation. The system partitions the 
relation into several fragments, and stores each 
fragment at a different site.



Fragmentation and replication can be combined: 
A relation can be partitioned into several 
fragments and there may be several replicas of 
each fragment



Data Replication

If relation r is replicated, a copy of relation r is 
stored in two or more sites. In the most extreme 
case, we have full replication, in which a copy is 
stored in every site in the system.
There are a number of advantages and 
disadvantages to replication.

Availability: If one of the sites containing relation 
r fails, then the relation r can be found in another 
site. Thus, the system can continue to process 
queries
involving r, despite the failure of one site



Increased parallelism.
 In the case where the majority of accesses to the 

relation r result in only the reading of the relation, 
then several sites can process
queries involving r in parallel. The more replicas 
of r there are, the greater the chance that the 
needed data will be found in the site where the 
transaction
is executing. Hence, data replication minimizes 
movement of data between
sites.



Increased overhead on update. 
The system must ensure that all replicas of a 

relation r are consistent; otherwise, erroneous 
computations may result. Thus,
whenever r is updated, the update must be 
propagated to all sites containing replicas. The 
result is increased overhead. For example, in a 
banking system, where account information is 
replicated in various sites, it is necessary to ensure 
that the balance in a particular account agrees in 
all sites.



We can simplify the management of replicas of 
relation r by choosing one of them as the 
primary copy of r. 

For example, in a banking system, an account 
can be associated with the site in which the 
account has been opened.



Data Fragmentation

If relation r is fragmented, r is divided into a number of 
fragments r1, r2, . . . , rn. These fragments contain 
sufficient information to allow reconstruction of the
original relation r. 

There are two different schemes for fragmenting a 
relation: horizontal fragmentation and vertical 
fragmentation. 

Horizontal fragmentation splits the relation by 
assigning each tuple of r to one or more fragments. 
Vertical
fragmentation splits the relation by decomposing the 
scheme R of relation r.



In horizontal fragmentation, a relation r is 
partitioned into a number of subsets, r1, r2, . . . , 
rn. Each tuple of relation r must belong to at 
least one of the fragments, so that the original 
relation can be reconstructed, if needed.

the account relation can be divided into several 
different fragments, each of which consists of 
tuples of accounts belonging to a particular
branch.



a horizontal fragment can be defined as a 
selection on the global relation r. That is, we use 
a predicate Pi to construct fragment ri :

We reconstruct the relation r by taking the union 
of all fragments; that is:



vertical fragmentation is the same as 
decomposition. Vertical fragmentation of r(R) 
involves the definition of several subsets of 
attributes R1, R2, . . . , Rn of the schema R so that:
R = R1  R2  · · ·  R∪ ∪ ∪

Each fragment ri of r is defined by

we can reconstruct relation
r from the fragments by taking the natural join:



One way of ensuring that the relation r can be 
reconstructed is to include the primary-key 
attributes of R in each Ri . More generally, any 
superkey can be used.
It is often convenient to add a special attribute, 
called a tuple-id, to the schema R



Transparency

The user of a distributed database system should 
not be required to know where the data are 
physically located nor how the data can be 
accessed at the specific local site. This 
characteristic, called data transparency, can take 
several forms:

Fragmentation transparency. Users are not 
required to know how a relation has been 
fragmented.



Replication transparency. Users view each data 
object as logically unique. The distributed system may 
replicate an object to increase either system 
performance or data availability. Users do not have to 
be concerned with what data objects have been 
replicated, or where replicas have been placed.

Location transparency. Users are not required to 
know the physical location of the data. The distributed 
database system should be able to find any data
as long as the data identifier is supplied by the user 
transaction.



Data items—such as relations, fragments, and 
replicas—must have unique names. This property 
is easy to ensure in a centralized database. In a 
distributed database, however, we must take care 
to ensure that two sites do not use the same
name for distinct data items.

One solution to this problem is to require all 
names to be registered in a central name server. 
The name server helps to ensure that the same 
name does not get used for different data items. 



The database system can create a set of 
alternative
names, or aliases, for data items. A user may 
thus refer to data items by simple names that are 
translated by the system to complete names.



Distributed Transactions

Access to the various data items in a distributed 
system is usually accomplished through 
transactions, which must preserve the ACID 
properties .

There are two types of transaction that we need 
to consider. The local transactions are those 
that access and update data in only one local 
database; the global transactions are those that 
access and update data in several local 
databases.



System Structure

Each site has its own local transaction manager, 
whose function is to ensure the ACID properties of 
those transactions that execute at that site. The 
various transaction managers cooperate to execute 
global transactions.

each site contains two subsystems
The transaction manager manages the execution of 

those transactions (or subtransactions) that access 
data stored in a local site. 

The transaction coordinator coordinates the 
execution of the various transactions (both local and 
global) initiated at that site.



Each transaction manager is responsible for:
• Maintaining a log for recovery purposes.

    • Participating in an appropriate concurrency-
control scheme to coordinate the
concurrent execution of the transactions 
executing at that site.



the coordinator is responsible for:
• Starting the execution of the transaction.
• Breaking the transaction into a number of sub 
transactions and distributing these  
subtransactions to the appropriate sites for 
execution.
• Coordinating the termination of the 
transaction, which may result in the transaction 
being committed at all sites or aborted at all 
sites.



System Failure Modes

A distributed system may suffer from the same 
types of failure that a centralized system does 

• Failure of a site.
• Loss of messages.
 • Failure of a communication link.
• Network partition.



Object-BasedDatabases

complex application domains require 
correspondingly complex data types, such as 
nested record structures, multivalued attributes, 
and inheritance, which are supported by 
traditional programming languages. 

The object-relational data model extends the 
relational data model by providing a richer type 
system including complex data types and object 
orientation.



Object-relational database systems, that is, 
database systems based on the object-relation 
model, provide a convenient migration path for 
users
of relational databases who wish to use object-
oriented features.



Two approaches are used 
1. Build an object-oriented database system, that is, a 
database system that natively supports an object-
oriented type system, and allows direct access to
data from an object-oriented programming language 
using the native type system of the language.
2. Automatically convert data from the native type 
system of the programming language to a relational 
representation, and vice versa. Data conversion is
specified using an object-relational mapping.



Complex Data Types

Traditional database applications have 
conceptually simple data types. The basic data 
items are records that are fairly small and whose 
fields are atomic.

Consider, for example, addresses.
 While an entire address could be viewed as an 

atomic data item of type string, this view would 
hide details such as the street address, city, state, 
and postal code, which could be of interest to 
queries. 



On the other hand, if an address were represented by 
breaking it into the components (street address, city, 
state, and postal code), writing queries would be more 
complicated since they would have to mention each field. 

A better alternative is to allow structured data types that 
allow a type address with subparts street address, city, 
state, and postal code.

With complex type systems we can represent E-R model 
concepts, such as composite attributes, multivalued 
attributes, generalization, and specialization
directly, without a complex translation to the relational 
model.



Rather than view a database as a set of records, 
users of certain applications view it as a set of 
objects (or entities).



Structured Types and Inheritance in SQL

Structured Types
Structured types allow composite attributes of E-

R designs to be represented directly. For 
instance, we can define the following structured 
type to represent a composite attribute name 
with component attribute firstname and 
lastname:



the following structured type can be used to 
represent a composite attribute address:

Such types are called user-defined types in SQL. 
The final and not final specifications are
related to subtyping,



We can now use these types to create composite 
attributes in a relation, by simply declaring an 
attribute to be of one of these types. For example, 
we could create a table person as follows:



The components of a composite attribute can be 
accessed using a “dot” notation; for instance 
name.firstname returns the firstname 
component of the name attribute. An access to 
attribute name would return a value of the 
structured type
Name.

We can also create a table whose rows are of a 
user-defined type. For example, we could define 
a type PersonType and create the table person as 
follows:





An alternative way of defining composite attributes in 
SQL is to use unnamed row types.

This definition is equivalent to the preceding table 
definition, except that the attributes name and address 
have unnamed types, and the rows of the table also
have an unnamed type



The following query illustrates how to access 
component attributes of a composite attribute. 
The query finds the last name and city of each 
person.

A structured type can have methods defined on 
it. We declare methods as part of the type 
definition of a structured type:





Note that the for clause indicates which type this 
method is for, while the keyword instance 
indicates that this method executes on an 
instance of the Person type. The variable self 
refers to the Person instance on which the 
method is invoked.

constructor functions are used to create values 
of structured types. A function with the same 
name as a structured type is a constructor 
function
for the structured type.



we could declare a constructor for the type
Name like this



We can then use new Name(’John’, ’Smith’) to create a 
value of the type Name.
We can construct a row value by listing its attributes 
within parentheses. 

By default every structured type has a constructor with 
no arguments, which sets the attributes to their default 
values. Any other constructors have to be created
explicitly. There can be more than one constructor for 
the same structured type; although they have the same 
name, they must be distinguishable by the number
of arguments and types of their arguments



The following statement illustrates how we can 
create a new tuple in the Person relation



Type Inheritance

Suppose that we have the following type definition for 
people:

We may want to store extra information in the 
database about people who are students, and about 
people who are teachers. Since students and teachers 
are alsopeople, we can use inheritance to define the 
student and teacher types in SQL:





Both Student and Teacher inherit the attributes 
of Person —namely, name and address. Student 
and Teacher are said to be subtypes of Person, 
and Person is a supertype of Student, as well as 
of Teacher .

Multiple inheritance



The SQL standard requires an extra field at the 
end of the type definition,whose value is either 
final or not final. The keyword final says that 
subtypes may
not be created from the given type, while not 
final says that subtypes may be created.



Table Inheritance

create table people of Person;
We can then define tables students and teachers 

as subtables of people,



Further, when we declare students and teachers 
as subtables of people, everytuple present in 
students or teachers becomes implicitly present 
in people. Thus, 
if a query uses the table people, it will find not 
only tuples directly inserted into that table, but 
also tuples inserted into its subtables, namely 
students and teachers.
However, only those attributes that are present in 
people can be accessed by that
query.



SQL permits us to find tuples that are in people but 
not in its subtables by using “only people”in place of 
people in a query. The only keyword can also be 
used in delete and update statements. Without the 
only keyword, a delete statement on a supertable, 
such as people, also deletes tuples that were 
originally inserted in subtables (such as students); 

delete from people where P;
would delete all tuples from the table people, as well 

as its subtables students and teachers, that satisfy P



If the only keyword is added to the above 
statement,
tuples that were inserted in subtables are not 
affected, even if they satisfy the where clause 
conditions

multiple inheritance is possible with tables, 



Array and Multiset Types in SQL

SQL supports two collection types: arrays and 
multisets;

a multiset is an unordered collection, where an 
element may occur multiple times. 



Creating and Accessing Collection Values

An array of values can be created in SQL:

Similarly, a multiset of keywords can be 
constructed as





Object-Identity and Reference Types in 
SQL

Object-oriented languages provide the ability to 
refer to objects. An attribute of a type can be a 
reference to an object of a specified type. 

For example, in SQL we can define a type 
Department with a field name and a field head 
that is a reference to the type Person, and a table 
departments of type Department, as follows:



We can omit the declaration scope people from the 
type declaration and instead 
make an addition to the create table statement

The referenced table must have an attribute that 
stores the identifier of the tuple. We declare this 
attribute, called the self-referential attribute, by 
adding a ref is clause to the create table statement:



Next generation databases

CAP theorem
The CAP Theorem is comprised of three components 

(hence its name) as they relate to distributed data stores:
Consistency. All reads receive the most recent write or 

an error.
Availability. All reads contain data, but it might not be 

the most recent.
Partition tolerance. The system continues to operate 

despite network failures (ie; dropped partitions, slow 
network connections, or unavailable network 
connections between nodes.)



In normal operations, your data store provides all 
three functions. But the CAP theorem maintains 
that when a distributed database experiences a 
network failure, you can provide either consistency 
or availability.

In the theorem, partition tolerance is a must. The 
assumption is that the system operates on a 
distributed data store so the system, by nature, 
operates with network partitions. Network failures 
will happen, so to offer any kind of reliable service, 
partition tolerance is necessary—the P of CAP.

https://codahale.com/you-cant-sacrifice-partition-tolerance/


if Partition means a break in communication 
then Partition tolerance would mean that the 
system should still be able to work even if there 
is a partition in the system. Meaning if a node 
fails to communicate, then one of the replicas of 
the node should be able to retrieve the data 
required by the user.

The CAP theorem states that a distributed 
database system has to make a tradeoff between 
Consistency and Availability when a Partition 
occurs.



That leaves a decision between the other two, C 
and A. When a network failure happens, one can 
choose to guarantee consistency or availability:

High consistency comes at the cost of lower 
availability.

High availability comes at the cost of lower 
consistency.



Non-relational database

Non-relational databases (often called NoSQL
 databases) are different from traditional 
relational databases in that they store their data 
in a non-tabular form. 

Instead, non-relational databases might be based 
on data structures like documents. A document 
can be highly detailed while containing a range 
of different types of information in different 
formats.

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained


There are several advantages to using non-
relational databases, including:

Massive dataset organization
In the age of Big Data, non-relational databases 
can not only store massive quantities of 
information, but they can also query these 
datasets with ease. Scale and speed are crucial 
advantages of non-relational databases.



Flexible database expansion
Data is not static. As more information is 
collected, a non-relational database can absorb 
these new data points, enriching the existing 
database with new levels of granular value even 
if they don’t fit the data types of previously 
existing information.

Multiple data structures
Built for the cloud



MongoDB

MongoDB is an open-source document database 
and leading NoSQL database.

MongoDB works on concept of collection and 
document.

Rather than using the tables and fixed schemas 
of a relational database management system 
(RDBMS), MongoDB uses key-value storage in the 
collection of documents. It also supports a 
number of options for horizontal scaling in 
large, production environments. 



MongoDB is a NoSQL document database system 
that scales well horizontally and implements 
data storage through a key-value system.



MongoDB Sharding

MongoDB achieves scaling through a technique 
known as “sharding”. It is the process of writing 
data across different servers to distribute the read 
and write load and data storage requirements

Sharding is the process of storing data records 
across multiple machines and it is MongoDB’s 
approach to meeting the demands of data growth. 
As the size of the data increases, a single machine 
may not be sufficient to store the data nor provide 
an acceptable read and write throughput



Sharding solves the problem with horizontal 
scaling. With sharding, you add more machines 
to support data growth and the demands of read 
and write operations.



MongoDB Replication

Replica Sets are a great way to replicate 
MongoDB data across multiple servers and have 
the database automatically failover in case of 
server failure.



MongoDB sharding basics

MongoDB sharding works by creating a cluster 
of MongoDB instances consisting of at least three 
servers. That means sharded clusters consist of 
three main components:

The shard
Mongos
Config servers



Shard

A shard is a single MongoDB instance that holds 
a subset of the sharded data. Shards can be 
deployed as replica sets to 
increase availability and provide redundancy. 
The combination of multiple shards creates a 
complete data set. For example, a 2 TB data set 
can be broken down into four shards, each 
containing 500 GB of data from the original data 
set.

https://www.bmc.com/blogs/redundancy-impact-availability/


Mongos
Mongos act as the query router providing a 

stable interface between the application and the 
sharded cluster. This MongoDB instance is 
responsible for routing the client requests to the 
correct shard.



Config Servers
Configuration servers store the metadata and the 

configuration settings for the whole cluster.





The application communicates with the routers 
(mongos) about the query to be executed.

The mongos instance consults the config servers 
to check which shard contains the required data 
set to send the query to that shard.

Finally, the result of the query will be returned 
to the application.



HBase

HBase is a column-oriented non-relational 
database management system that runs on top of 
Hadoop Distributed File System (HDFS). HBase 
provides a fault-tolerant way of storing sparse 
data sets, which are common in many big data 
use cases. It is well suited for real-time data 
processing or random read/write access to large 
volumes of data.

https://www.ibm.com/analytics/hadoop/hdfs
https://www.ibm.com/analytics/hadoop/hdfs


Unlike relational database systems, HBase does 
not support a structured query language like 
SQL; in fact, HBase isn’t a relational data store at 
all. HBase applications are written in Java much 
like a typical Apache MapReduce application.

https://www.ibm.com/analytics/relational-database
https://www.ibm.com/analytics/hadoop/mapreduce
https://www.ibm.com/analytics/hadoop/mapreduce


HBase is a column-oriented database and the 
tables in it are sorted by row. The table schema 
defines only column families, which are the key 
value pairs. A table have multiple column 
families and each column family can have any 
number of columns. Subsequent column values 
are stored contiguously on the disk. Each cell 
value of the table has a timestamp



in an HBase:
Table is a collection of rows.
Row is a collection of column families.
Column family is a collection of columns.
Column is a collection of key value pairs.





Features of HBase
HBase is linearly scalable.
It has automatic failure support.
It provides consistent read and writes.
It integrates with Hadoop, both as a source and a 

destination.
It has easy java API for client.
It provides data replication across clusters



Cassandra

Apache Cassandra is an open source, distributed 
and decentralized/distributed storage system 
(database), for managing very large amounts of 
structured data spread out across the world. It 
provides highly available service with no single 
point of failure.



It is scalable, fault-tolerant, and consistent.
It is a column-oriented database.
Its distribution design is based on Amazon’s Dynamo and 

its data model on Google’s Bigtable.
Created at Facebook, it differs sharply from relational 

database management systems.
Cassandra implements a Dynamo-style replication model 

with no single point of failure, but adds a more powerful 
“column family” data model.

Cassandra is being used by some of the biggest companies 
such as Facebook, Twitter, Cisco, Rackspace, ebay, Twitter, 
Netflix, and more



Features of Cassandra

Elastic scalability  Cassandra is highly scalable; it −
allows to add more hardware to accommodate 
more customers and more data as per requirement.

Always on architecture  Cassandra has no single −
point of failure and it is continuously available for 
business-critical applications that cannot afford a 
failure.

Fast linear-scale performance  Cassandra is −
linearly scalable, i.e., it increases your throughput 
as you increase the number of nodes in the cluster. 
Therefore it maintains a quick response time.



Flexible data storage  Cassandra accommodates all possible −
data formats including: structured, semi-structured, and 
unstructured. It can dynamically accommodate changes to 
your data structures according to your need.

Easy data distribution  Cassandra provides the flexibility to −
distribute data where you need by replicating data across 
multiple data centers.

Transaction support  Cassandra supports properties like −
Atomicity, Consistency, Isolation, and Durability (ACID).

Fast writes  Cassandra was designed to run on cheap −
commodity hardware. It performs blazingly fast writes and 
can store hundreds of terabytes of data, without sacrificing the 
read efficiency.



Components of Cassandra

Node  It is the place where data is stored.−
Data center  It is a collection of related nodes.−
Cluster  A cluster is a component that contains −

one or more data centers.
Commit log  The commit log is a crash-−

recovery mechanism in Cassandra. Every write 
operation is written to the commit log.



Mem-table  A mem-table is a memory-resident −
data structure. After commit log, the data will be 
written to the mem-table. Sometimes, for a single-
column family, there will be multiple mem-tables.

SSTable  It is a disk file to which the data is flushed −
from the mem-table when its contents reach a 
threshold value.

Bloom filter  These are nothing but quick, −
nondeterministic, algorithms for testing whether an 
element is a member of a set. It is a special kind of 
cache. Bloom filters are accessed after every query



Cassandra Query Language

users can access Cassandra through its nodes 
using Cassandra Query Language (CQL). CQL 
treats the database (Keyspace) as a container of 
tables. Programmers use cqlsh: a prompt to 
work with CQL or separate application language 
drivers.



Write Operations
Every write activity of nodes is captured by the 

commit logs written in the nodes. Later the data 
will be captured and stored in the mem-table. 
Whenever the mem-table is full, data will be 
written into the SStable data file. All writes are 
automatically partitioned and replicated 
throughout the cluster. Cassandra periodically 
consolidates the SSTables, discarding 
unnecessary data.



Read Operations
During read operations, Cassandra gets values 

from the mem-table and checks the bloom filter 
to find the appropriate SSTable that holds the 
required data.
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