
D ATA S T O R A G E A N D Q U E RY I N G

Module iv

RAID(redundant arrays of independent disks

The data-storage requirements of some applications
(in particular Web, database,and multimedia
applications) have been growing so fast that a large
number of disks are needed to store their data, even
though disk-drive capacities have been growing
very fast.

Having a large number of disks in a system presents
opportunities for improving the rate at which data
can be read or written, if the disks are operated in
parallel. Several independent reads or writes can
also be performed in parallel

A variety of disk-organization techniques,
collectively called redundant arrays of
independent disks (RAID), have been proposed to
achieve improved performance and reliability.

RAID (redundant array of independent disks) is a
way of storing the same data in different places
on multiple hard disks or solid-state drives to
protect data in the case of a drive failure.

https://searchstorage.techtarget.com/definition/hard-disk

Store extra information that is not needed normally, but

that can be used in the event of failure of a disk to rebuild

the lost information

Effective mean time to failure is increased

Simplest (but expensive) approach to redundancy is to

duplicate every disk.

This technique is called mirroring (shadowing).

A logical disk then consists of two physical disks,
and every write is carried out on both disks.

If one of the disks fails, the data can be read from
the other.Data will be lost only if the second disk
fails before the first failed disk is repaired.

With disk mirroring, the rate at which read
requests can be handled is doubled, since read
requests can be sent to either disk The transfer rate
of each read is the same as in a single-disk system,
but the number of reads per unit time has doubled.

With multiple disks, we can improve the transfer
rate as well (or instead) by striping data across
multiple disks. In its simplest form, data
striping consists of
splitting the bits of each byte across multiple
disks; such striping is called bit-level striping.

Different type of data striping :

1. Bit level striping : Splitting the bits of each byte across multiple disks

 : No of disks either is a multiple of 8 or a factor of 8

 : These disks are considered as single disk.

 E.g. : Array of eight disks, write bit i of each byte to disk I

2. Block-level striping : Stripes blocks across multiple disks

 : Fetches n blocks in parallel from the n disks

Block-level striping stripes blocks across
multiple disks. It treats the array of disks as a
single large disk, and it gives blocks logical
numbers; we assume the block numbers start
from 0. With an array of n disks, block-level
striping assigns logical block i of the disk array to
disk (i mod n) + 1; it uses the (i /n)th
physical block of the disk to store logical block i .
For example, logical block 11 is stored in
physical block 1 of disk 4.

When reading a large file, block-level striping
fetches n blocks at a time in parallel from the n
disks, giving a high data-transfer rate for large
reads.
When a single block is read, the data-transfer
rate is the same as on one disk, but the
remaining n 1 disks are free to perform other −
actions.

In summary, there are two main goals of
parallelism in a disk system:
1. Load-balance multiple small accesses (block
accesses), so that the throughput of such accesses
increases.
2. Parallelize large accesses so that the response
time of large accesses is reduced.

RAID Levels

Mirroring provides high reliability, but it is
expensive. Striping provides high data-transfer rates,
but does not improve reliability.

Various alternative schemes aim to provide
redundancy at lower cost by combining disk striping
with “parity” bits

These schemes have different cost—performance
trade-offs. The schemes are classified into RAID levels

(For all levels, the figure depicts four disks’ worth of
data, and the extra disks depicted are used to store
redundant information for failure recovery.)

RAID level 0 refers to disk arrays with striping
at the level of blocks, but without any
redundancy (such as mirroring or parity bits).

RAID level 1 refers to disk mirroring with block
striping.

RAID level 2, known as memory-style error-
correcting-code (ECC) organization, employs
parity bits. Memory systems have long used
parity bits for error detection and correction

Each byte in a memory system may have a
parity bit associated with it that records whether the
numbers of bits in the byte that are set to 1 is even
(parity = 0) or odd (parity = 1).

If one of the bits in the byte gets damaged (either a 1
becomes a 0, or a 0 becomes a 1), the parity of the byte
changes and thus will not match the stored parity.

 Similarly,if the stored parity bit gets damaged, it will not
match the computed parity.Thus, all 1-bit errors will be
detected by the memory system. Error-correcting
schemes store 2 or more extra bits, and can reconstruct
the data if a single bitgets damaged.

The idea of error-correcting codes can be used
directly in disk arrays by striping bytes across
disks. For example, the first bit of each byte
could be
stored in disk 0, the second bit in disk 1, and so
on until the eighth bit is stored in disk 7, and the
error-correction bits are stored in further disks.

The disks labeled P store the error correction
bits. If one of the disks fails, the remaining bits of
the byte and the associated error-correction bits
can be read from other disks, and can be used to
reconstruct the damaged data.

RAID level 3, bit-interleaved parity organization,
improves on level 2 by exploiting the fact that disk
controllers, unlike memory systems, can detect
whether a sector has been read correctly, so a single parity
bit can be used for error correction, as well as for
detection.

If one of the sectors gets damaged, the system knows
exactly which sector it is, and, for each bit in the sector, the
system can figure out whether it is a 1 or a 0 by computing
the parity of the corresponding bits from sectors in the
other disks. If the parity of the remaining bits is equal to
the stored parity, the missing bit is 0; otherwise, it is 1

RAID level 3 is as good as level 2, but is less
expensive in the number of extra disks (it has
only a one-disk overhead), so level 2 is not used
in practice.

RAID level 3 has two benefits over level 1. It
needs only one parity disk for several regular
disks, whereas level 1 needs one mirror disk for
every
disk, and thus level 3 reduces the storage
overhead.

RAID level 4, block-interleaved parity
organization, uses block-level striping, like RAID
0, and in addition keeps a parity block on a
separate disk for corresponding blocks from N
other disks.

If one of the disks fails, the parity block can be
used with the corresponding blocks from the
other disks to restore the blocks of the failed disk

RAID level 5, block-interleaved distributed
parity, improves on level 4 by partitioning data
and parity among all N + 1 disks, instead of
storing data in
N disks and parity in one disk.

RAID level 6, the P + Q redundancy scheme, is
much like RAID level 5, but stores extra
redundant information to guard against multiple
disk failures.
Instead of using parity, level 6 uses error-
correcting codes.

File Organization

A database is mapped into a number of different files
that are maintained by the underlying operating
system. These files reside permanently on disks.

A file is organized logically as a sequence of records.
These records are mapped onto disk blocks.

Each file is also logically partitioned into fixed-length
storage units called blocks, which are the units of both
storage allocation and data transfer. Most
databases use block sizes of 4 to 8 kilobytes by default

A block may contain several records; the exact set
of records that a block contains is determined by
the form of physical data organization being used.

In a relational database, tuples of distinct
relations are generally of different sizes. One
approach to mapping the database to files is to use
several files, and to store records of only one fixed
length in any given file. An alternative is to
structure our files so that we can accommodate
multiple lengths for records;

Fixed-Length Records

As an example, let us consider a file of instructor
records for our university database. Each record
of this file is defined (in pseudocode) as:

Assume that each character occupies 1 byte and
that numeric (8,2) occupies 8 bytes.

Suppose that instead of allocating a variable
amount of bytes for the attributes ID, name, and
dept name, we allocate the maximum number of
bytes that each attribute can hold.

Then, the instructor record is 53 bytes long. A
simple approach is to use the first 53 bytes for
the first record, the next 53 bytes for the second
record, and so on

However, there are two problems with this simple
approach:

1. Unless the block size happens to be a multiple of 53
(which is unlikely), some records will cross block
boundaries. That is, part of the record will be stored in
one block and part in another. It would thus require
two block accesses to read or write such a record.
2. It is difficult to delete a record from this structure.
The space occupied by the record to be deleted must be
filled with some other record of the file, or we must
have a way of marking deleted records so that they can
be ignored

To avoid the first problem, we allocate only as many
records to a block as would fit entirely in the block.

When a record is deleted, we could move the record
that came after it into the space formerly occupied by
the deleted record, and so on, until every record fol-
lowing the deleted record has been moved ahead .

Such an approach requires moving a large number of
records. It might be easier simply to move the
final record of the file into the space occupied by the
deleted record

It is undesirable to move records to occupy the
space freed by a deleted record, since doing so
requires additional block accesses. Since
insertions tend to be more frequent than
deletions, it is acceptable to leave open the space
occupied by the deleted record, and to wait for a
subsequent insertion before reusing the space.
A simple marker on a deleted record is not
sufficient, since it is hard to find this available
space when an insertion is being done. Thus, we
need to introduce an additional structure.

At the beginning of the file, we allocate a certain
number of bytes as a file header. The header will
contain a variety of information about the file. For
now, all we need to store there is the address of the
first record whose contents are deleted.

We use this first record to store the address of the
second available record, and so on. Intuitively, we
can think of these stored addresses as pointers,
since they point to the location of a record.

The deleted records thus form a linked list, which is
often referred to as a free list.

On insertion of a new record, we use the record
pointed to by the header.

We change the header pointer to point to the
next available record. If no space is available, we
add the new record to the end of the file.

Insertion and deletion for files of fixed-length
records are simple to implement, because the
space made available by a deleted record is
exactly the space needed to insert a record.

Variable-Length Records

Variable-length records arise in database
systems in several ways:
• Storage of multiple record types in a file.
• Record types that allow variable lengths for one
or more fields.
• Record types that allow repeating fields, such as
arrays or multisets.

Different techniques for implementing variable-
length records exist. Two different
problems must be solved by any such technique:
• How to represent a single record in such a way
that individual attributes can be extracted easily.
• How to store variable-length records within a
block, such that records in a block can be
extracted easily

The representation of a record with variable-length
attributes typically has two parts: an initial part with
fixed length attributes, followed by data for variable-
length attributes.

Fixed-length attributes, such as numeric values, dates, or
fixed length character strings are allocated as many
bytes as required to store their value.

Variable-length attributes, such as varchar types, are
represented in the initial part of the record by a pair
(offset, length), where offset denotes where the data for
that attribute begins within the record, and length is the
length in bytes of the variable-sized attribute.

The values for these attributes are stored
consecutively, after the initial fixed-length part
of the record. Thus, the initial part of the record
stores a fixed size of information about each
attribute, whether it is fixed-length or variable-
length.

null bitmap, which indicates which attributes of
the record have a null value. In this particular
record, if the salary were null, the fourth bit of
the bitmap would be set to 1, and the salary
value stored
in bytes 12 through 19 would be ignored.

The slotted-page structure is commonly used for
organizing variable length records within a
block

There is a header at the beginning of each block,
containing the following information:
1. The number of record entries in the header.
2. The end of free space in the block.
3. An array whose entries contain the location
and size of each record

The actual records are allocated contiguously in
the block, starting from the end of the block. The
free space in the block is contiguous, between
the final entry in the header array, and the first
record. If a record is inserted, space is allocated
for it at the end of free space, and an entry
containing its size and location is added to the
header.

If a record is deleted, the space that it occupies is
freed, and its entry is set to deleted (its size is set
to 1, for example).−

Organization of Records in Files

Several of the possible ways of organizing
records in files are:

Heap file organization. Any record can be
placed anywhere in the file where there is space
for the record. There is no ordering of records.
Typically, there is a single file for each relation.

 Sequential file organization. Records are
stored in sequential order, according to the value
of a “search key”of each record

Hashing file organization. A hash function is
computed on some attribute of each record. The
result of the hash function specifies in which
block of the file the record should be placed.

Generally, a separate file is used to store the
records of each relation. However, in a
multitable clustering file organization, records of
several different relations are stored in the same
file

Sequential File Organization

A sequential file is designed for efficient processing
of records in sorted order based on some search key.

A search key is any attribute or set of attributes; it
need not be the primary key, or even a superkey.

To permit fast retrieval of records in search-key
order, we chain together records by pointers.

The pointer in each record points to the next record
in search-key order. Furthermore, to minimize the
number of block accesses in sequential file
processing, we store records physically in search-key
order, or as close to search-key order as possible.

The sequential file organization allows records to be
read in sorted order; that can be useful for display
purposes, as well as for certain query-processing
algorithms.

For insertion, we apply the following rules:
1. Locate the record in the file that comes before the
record to be inserted in search-key order.
2. If there is a free record (that is, space left after a
deletion) within the same block as this record,
insert the new record there. Otherwise, insert the
new record in an overflow block. In either case,
adjust the pointers so as to chain together the
records in search-key order.

multitable clustering file organization

A multitable clustering file organization is a file
organization, such as that stores related records
of two or more relations in each block. Such a
file organization allows us to read records that
would satisfy the join condition by using one
block read. Thus, we are able to process this
particular query more efficiently

Indexing and Hashing

Basic Concepts
An index for a file in a database system works in

much the same way as the index of textbook.
Database-system indices play the same role as

book indices in libraries. For example, to retrieve
a student record given an ID, the database
system would look up an index to find on which
disk block the corresponding record resides, and
then fetch the disk block, to get the appropriate
student record.

Keeping a sorted list of students’ ID would not
work well on very large databases with
thousands of students, since the index would
itself be very big;
further, even though keeping the index sorted
reduces the search time, finding a student can
still be rather time-consuming. Instead, more
sophisticated indexing techniques may be used.

There are two basic kinds of indices:
Ordered indices. Based on a sorted ordering of

the values.
Hash indices. Based on a uniform distribution

of values across a range of buckets. The bucket to
which a value is assigned is determined by a
function,
called a hash function.

several techniques for both ordered indexing and
hashing.

Each technique must be evaluated on the basis of
these factors:

Access types: The types of access that are supported
efficiently. Access types can include finding records
with a specified attribute value and finding records
whose attribute values fall in a specified range.
• Access time: The time it takes to find a particular
data item, or set of items, using the technique in
question.

Insertion time: The time it takes to insert a new data
item. This value includes the time it takes to find the
correct place to insert the new data item, as well
as the time it takes to update the index structure.

Deletion time: The time it takes to delete a data item.
This value includes the time it takes to find the item
to be deleted, as well as the time it takes to update
the index structure.
• Space overhead: The additional space occupied by
an index structure. Provided that the amount of
additional space is moderate, it is usually worth
while to sacrifice the space to achieve improved
performance.

We often want to have more than one index for
a file.

An attribute or set of attributes used to look up
records in a file is called a search key.

1.Ordered Indices

To gain fast random access to records in a file, we
can use an index structure.

Each index structure is associated with a particular
search key. Just like the index of a book or a library
catalog, an ordered index stores the values of the
search keys in sorted order, and associates with
each search key the records that contain it.

The records in the indexed file may themselves be
stored in some sorted order, just as books in a
library are stored according to some attribute.

file may have several indices, on different search
keys. If the file containing the records is
sequentially ordered, a clustering index is an
index whose search key also defines the
sequential order of the file.

Clustering indices are also called primary
indices

Indices whose search key specifies an order
different from the sequential order of the file are
called nonclustering indices, or secondary
indices

1.1 Dense and Sparse Indices

An index entry, or index record, consists of a
search-key value and pointers to one or more
records with that value as their search-key value.

The pointer to a record consists of the identifier
of a disk block and an offset within the disk
block
to identify the record within the block.

There are two types of ordered indices that we
can use:

Dense index: In a dense index, an index entry
appears for every search-key value in the file. In a
dense clustering index, the index record contains the
search-key value and a pointer to the first data record
with that search-key value.

The rest of the records with the same search-key
value would be stored sequentially after the first
record, since, because the index is a clustering one,
records are sorted on the same search key. In a dense
nonclustering index, the index must store a list of
pointers to all records with the same search-key value

Sparse index: In a sparse index, an index entry
appears for only some of the search-key values.
Sparse indices can be used only if the relation is
stored in sorted order of the search key, that is, if
the index is a clustering index.

multilevel indices

Indices with two or more levels are called
multilevel indices.

B+-Tree Index Files

The B+ tree is a balanced binary search tree. It
follows a multi-level index format.

In the B+ tree, leaf nodes denote actual data
pointers. B+ tree ensures that all leaf nodes
remain at the same height.

In the B+ tree, the leaf nodes are linked using a
link list. Therefore, a B+ tree can support
random access as well as sequential access.

The main disadvantage of the index-sequential file
organization is that performance degrades as the
file grows.

The B+-tree index structure is the most widely used
of several index structures that maintain their
efficiency despite insertion and deletion of data.

 A B+-tree index takes the form of a balanced tree
in which every path from the root of the tree to a
leaf of the tree is of the same length. Each nonleaf
node in the tree has between [n/2] and n children,
where n is fixed for a particular tree.

Structure of a B+-Tree

In the B+ tree, every leaf node is at equal
distance from the root node. The B+ tree is of the
order n where n is fixed for every B+ tree.

It contains an internal node and leaf node.

A B +-tree index is a multilevel index, but it has a
structure that differs from that of the multilevel
index-sequential file.

It contains up to n 1 search-key values K1,K2,...,Kn −
 1, and n pointers P1,P2,...,Pn. The search-key −

values within a node are kept in sorted order; thus,
if i <j , then Ki <K j

We consider first the structure of the leaf nodes.
For i = 1,2,...,n 1, pointer Pi points to a file record −

with search-key value Ki . Pointer Pn has a
special purpose

Since there is a linear order on the leaves based
on the search-key values that they contain, we
use Pn to chain together the leaf nodes in search-
key order. This ordering allows for efficient
sequential processing of the file.

The nonleaf nodes of the B+-tree form a multilevel
(sparse) index on the leaf nodes.

The structure of nonleaf nodes is the same as that
for leaf nodes, except that all pointers are pointers
to tree nodes.

A nonleaf node may hold up to n pointers, and must
hold at least [n/2] pointers.

The number of pointers in a node is called the
fanout of the node.

Nonleaf nodes are also referred to as internal nodes.

These examples of B+-trees are all balanced.
That is, the length of every path from the root to
a leaf node is the same.

This property is a requirement for a B+tree.
Indeed, the “B”in B+-tree stands for “balanced.”

It is the balance property of B+-trees that
ensures good performance for lookup, insertion,
and deletion.

PA RT - 2

Module4

Hashing –Statuc hashing

One disadvantage of sequential file organization
is that we must access an index structure to
locate data.

File organizations based on the technique of
hashing allow us to avoid accessing an index
structure.

In our description of hashing, we shall use the
term bucket to denote a unit of storage that can
store one or more records.

 A bucket is typically a disk block, but could be
chosen to be smaller or larger than a disk block

let K denote the set of all search-key values, and
let B denote the set of all bucket addresses. A
hash function h is a function from K to B. Let h
denote
a hash function.

To insert a record with search key Ki , we
compute h(Ki), which gives the address of the
bucket for that record.

To perform a lookup on a search-key value Ki ,
we simply compute h(Ki), then search the bucket
with that address.

Suppose that two search keys, K5 and K7, have
the same hash value; that is, h(K5) = h(K7).

If we perform a lookup on K5, the bucket h(K5)
contains records with search-key values K5 and
records with search-key values K7.

Thus, we have to check the search-key value of
every record in the bucket to verify that the
record is one that we want.

Deletion is equally straightforward. If the
search-key value of the record to be deleted is
Ki , we compute h(Ki), then search the
corresponding bucket for that
record, and delete the record from the bucket.

Hashing can be used for two different purposes.
In a hash file organization, we obtain the
address of the disk block containing a desired
record directly by
computing a function on the search-key value of
the record.

 In a hash index organization we organize the
search keys, with their associated pointers, into a
hash file structure.

Hash Functions

An ideal hash function distributes the stored
keys uniformly across all the buckets, so that
every bucket has the same number of records.

Since we do not know at design time precisely
which search-key values will be stored in the file,
we want to choose a hash function that assigns
search-key
values to buckets in such a way that the
distribution has these qualities:
 The distribution is uniform.
 The distribution is random

Hash functions require careful design. A bad
hash function may result in lookup taking time
proportional to the number of search keys in the
file. A well designed function gives an average-
case lookup time that is a (small) constant,
independent of the number of search keys in the
file

Handling of Bucket Overflows

If the bucket does not have enough space,
a bucket overflow is said to occur. Bucket overflow can
occur for several reasons:

Insufficient buckets.
The number of buckets, which we denote nB , must be

chosen such that nB >nr /fr , where nr denotes the total
number of records that will be stored and fr denotes
the number of records that will fit in a bucket. This
designation, of course, assumes that the total number
of records is known when the hash function is chosen.

 Skew. Some buckets are assigned more records
than are others, so a bucket may overflow even
when other buckets still have space.

 This situation is called bucket skew.
 Skew can occur for two reasons:

1. Multiple records may have the same search
key.
2. The chosen hash function may result in
nonuniform distribution of search keys

So that the probability of bucket overflow is
reduced, the number of buckets is chosen to be
(nr /fr) (1 + d), where d is a fudge factor, ∗
typically around 0.2.
Some space is wasted: About 20 percent of the
space in the buckets will be empty. But the
benefit is that the probability of overflow is
reduced.

Despite allocation of a few more buckets than
required, bucket overflow can still occur.

We handle bucket overflow by using overflow
buckets. If a record must be inserted into a bucket
b, and b is already full, the system provides an
overflow bucket for b, and inserts the record into
the overflow bucket.

If the overflow bucket is also full, the system
provides another overflow bucket, and so
on. All the overflow buckets of a given bucket are
chained together in a linked list,

Overflow handling using such a linked list is
called overflow chaining.

We must change the lookup algorithm slightly to
handle overflow chaining.
As before, the system uses the hash function on
the search key to identify a bucket b. The system
must examine all the records in bucket b to see
whether they match the search key, as before. In
addition, if bucket b has overflow buckets, the
system
must examine the records in all the overflow
buckets also.

The form of hash structure is closed hashing.

Under an alternative approach, called open
hashing, the set of buckets is fixed, and there are
no overflow chains. Instead, if a bucket is full,
the system inserts records in some other bucket
in the initial set of buckets B.
One policy is to use the next bucket (in cyclic
order) that has space; this policy is called linear
probing.

Dynamic Hashing

the need to fix the set B of bucket addresses presents a
serious problem with the static hashing technique.

Most databases grow larger over time. If we are to use
static hashing for such a database, we have
three classes of options:

1. Choose a hash function based on the current file size
2. Choose a hash function based on the anticipated size

of the file at some point
in the future

3. Periodically reorganize the hash structure in
response to file growth.

Several dynamic hashing techniques allow the hash
function to be modified dynamically to accommodate
the growth or shrinkage of the database.

Extendable hashing(dynamic hashing) copes with
changes in database size by splitting and combining
buckets as the database grows and shrinks. As a result,
space efficiency is retained.

With extendable hashing, we choose a hash function h
with the desirable properties of uniformity and
randomness. However, this hash function generates
values over a relatively large range—namely, b-bit
binary integers. A typical value for b is 32.

	Slide 1
	RAID(redundant arrays of independent disks
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	RAID Levels
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	File Organization
	Slide 24
	Fixed-Length Records
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Variable-Length Records
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Organization of Records in Files
	Slide 45
	Sequential File Organization
	Slide 47
	multitable clustering file organization
	Indexing and Hashing
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	1.Ordered Indices
	Slide 56
	Slide 57
	1.1 Dense and Sparse Indices
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	multilevel indices
	B+-Tree Index Files
	Slide 65
	Structure of a B+-Tree
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 1
	Hashing –Statuc hashing
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Hash Functions
	Slide 8
	Slide 9
	Handling of Bucket Overflows
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Dynamic Hashing
	Slide 18

