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RAID(redundant arrays  of independent disks

The data-storage requirements of some applications 
(in particular Web, database,and multimedia 
applications) have been growing so fast that a large 
number of disks are needed to store their data, even 
though disk-drive capacities have been growing 
very fast.

Having a large number of disks in a system presents 
opportunities for improving the rate at which data 
can be read or written, if the disks are operated in
parallel. Several independent reads or writes can 
also be performed in parallel



A variety of disk-organization techniques, 
collectively called redundant arrays of 
independent disks (RAID), have been proposed to 
achieve improved performance and reliability.

RAID (redundant array of independent disks) is a 
way of storing the same data in different places 
on multiple hard disks or solid-state drives to 
protect data in the case of a drive failure.

https://searchstorage.techtarget.com/definition/hard-disk


Store extra information that is not needed normally, but 

that can be used in the event of failure of a disk to rebuild 

the lost information

Effective mean time to failure is increased

Simplest (but expensive) approach to redundancy is to 

duplicate every disk. 

This technique is called mirroring (shadowing).



A logical disk then consists of two physical disks, 
and every write is carried out on both disks.

If one of the disks fails, the data can be read from 
the other.Data will be lost only if the second disk 
fails before the first failed disk is repaired.

With disk mirroring, the rate at which read 
requests can be handled is doubled, since read 
requests can be sent to either disk The transfer rate 
of each read is the same as in a single-disk system, 
but the number of reads per unit time has doubled.



With multiple disks, we can improve the transfer 
rate as well (or instead) by striping data across 
multiple disks. In its simplest form, data 
striping consists of
splitting the bits of each byte across multiple 
disks; such striping is called bit-level striping.



Different type of data striping :

1. Bit level striping :  Splitting the bits of each byte across multiple disks

                                     : No of disks either is a multiple of 8 or a factor of 8

                                     : These disks are considered as single disk.

           E.g.                     : Array of eight disks, write bit i of each byte to disk I

2. Block-level striping  : Stripes blocks across multiple disks

                                          : Fetches n blocks  in parallel from the n disks



Block-level striping stripes blocks across 
multiple disks. It treats the array of disks as a 
single large disk, and it gives blocks logical 
numbers; we assume the block numbers start 
from 0. With an array of n disks, block-level 
striping assigns logical block i of the disk array to 
disk (i mod n) + 1; it uses the            (i /n )th 
physical block of the disk to store logical block i . 
For example, logical block 11 is stored in 
physical block 1 of disk 4.



When reading a large file, block-level striping 
fetches n blocks at a time in parallel from the n 
disks, giving a high data-transfer rate for large 
reads.
When a single block is read, the data-transfer 
rate is the same as on one disk, but the 
remaining n  1 disks are free to perform other −
actions.



In summary, there are two main goals of 
parallelism in a disk system:
1. Load-balance multiple small accesses (block 
accesses), so that the throughput of such accesses 
increases.
2. Parallelize large accesses so that the response 
time of large accesses is reduced.



RAID Levels

Mirroring provides high reliability, but it is 
expensive. Striping provides high data-transfer rates, 
but does not improve reliability. 

Various alternative schemes aim to provide 
redundancy at lower cost by combining disk striping 
with “parity” bits

These schemes have different cost—performance
trade-offs. The schemes are classified into RAID levels

(For all levels, the figure depicts four disks’ worth of 
data, and the extra disks depicted are used to store 
redundant information for failure recovery.)



RAID level 0 refers to disk arrays with striping 
at the level of blocks, but without any 
redundancy (such as mirroring or parity bits).

RAID level 1 refers to disk mirroring with block 
striping. 

RAID level 2, known as memory-style error-
correcting-code (ECC) organization, employs 
parity bits. Memory systems have long used 
parity bits for error detection and correction



Each byte in a memory system may have a
parity bit associated with it that records whether the 
numbers of bits in the byte that are set to 1 is even 
(parity = 0) or odd (parity = 1).

If one of the bits in the byte gets damaged (either a 1 
becomes a 0, or a 0 becomes a 1), the parity of the byte 
changes and thus will not match the stored parity.

 Similarly,if the stored parity bit gets damaged, it will not 
match the computed parity.Thus, all 1-bit errors will be 
detected by the memory system. Error-correcting 
schemes store 2 or more extra bits, and can reconstruct 
the data if a single bitgets damaged.



The idea of error-correcting codes can be used 
directly in disk arrays by striping bytes across 
disks. For example, the first bit of each byte 
could be
stored in disk 0, the second bit in disk 1, and so 
on until the eighth bit is stored in disk 7, and the 
error-correction bits are stored in further disks.





The disks labeled P store the error correction 
bits. If one of the disks fails, the remaining bits of 
the byte and the associated error-correction bits 
can be read from other disks, and can be used to 
reconstruct the damaged data. 



RAID level 3, bit-interleaved parity organization, 
improves on level 2 by exploiting the fact that disk 
controllers, unlike memory systems, can detect
whether a sector has been read correctly, so a single parity 
bit can be used for error correction, as well as for 
detection.

If one of the sectors gets damaged, the system knows 
exactly which sector it is, and, for each bit in the sector, the 
system can figure out whether it is a 1 or a 0 by computing 
the parity of the corresponding bits from sectors in the 
other disks. If the parity of the remaining bits is equal to 
the stored parity, the missing bit is 0; otherwise, it is 1



RAID level 3 is as good as level 2, but is less 
expensive in the number of extra disks (it has 
only a one-disk overhead), so level 2 is not used 
in practice.

RAID level 3 has two benefits over level 1. It 
needs only one parity disk for several regular 
disks, whereas level 1 needs one mirror disk for 
every
disk, and thus level 3 reduces the storage 
overhead. 





RAID level 4, block-interleaved parity 
organization, uses block-level striping, like RAID 
0, and in addition keeps a parity block on a 
separate disk for corresponding blocks from N 
other disks.

If one of the disks fails, the parity block can be 
used with the corresponding blocks from the 
other disks to restore the blocks of the failed disk



RAID level 5, block-interleaved distributed 
parity, improves on level 4 by partitioning data 
and parity among all N + 1 disks, instead of 
storing data in
N disks and parity in one disk. 



RAID level 6, the P + Q redundancy scheme, is 
much like RAID level 5, but stores extra 
redundant information to guard against multiple 
disk failures.
Instead of using parity, level 6 uses error-
correcting codes.



File Organization

A database is mapped into a number of different files 
that are maintained by the underlying operating 
system. These files reside permanently on disks. 

A file is organized logically as a sequence of records. 
These records are mapped onto disk blocks.

Each file is also logically partitioned into fixed-length 
storage units called blocks, which are the units of both 
storage allocation and data transfer. Most
databases use block sizes of 4 to 8 kilobytes by default



A block may contain several records; the exact set 
of records that a block contains is determined by 
the form of physical data organization being used. 

In a relational database, tuples of distinct 
relations are generally of different sizes. One 
approach to mapping the database to files is to use 
several files, and to store records of only one fixed 
length in any given file. An alternative is to 
structure our files so that we can accommodate 
multiple lengths for records;



Fixed-Length Records

As an example, let us consider a file of instructor 
records for our university database. Each record 
of this file is defined (in pseudocode) as:



Assume that each character occupies 1 byte and 
that numeric (8,2) occupies 8 bytes. 

Suppose that instead of allocating a variable 
amount of bytes for the attributes ID, name, and 
dept name, we allocate the maximum number of 
bytes that each attribute can hold. 

Then, the instructor record is 53 bytes long. A 
simple approach is to use the first 53 bytes for 
the first record, the next 53 bytes for the second 
record, and so on



However, there are two problems with this simple 
approach:

1. Unless the block size happens to be a multiple of 53 
(which is unlikely), some records will cross block 
boundaries. That is, part of the record will be stored in 
one block and part in another. It would thus require 
two block accesses to read or write such a record.
2. It is difficult to delete a record from this structure. 
The space occupied by the record to be deleted must be 
filled with some other record of the file, or we must 
have a way of marking deleted records so that they can 
be ignored



To avoid the first problem, we allocate only as many 
records to a block as would fit entirely in the block.

When a record is deleted, we could move the record 
that came after it into the space formerly occupied by 
the deleted record, and so on, until every record fol-
lowing the deleted record has been moved ahead .

Such an approach requires moving a large number of 
records. It might be easier simply to move the
final record of the file into the space occupied by the 
deleted record 









It is undesirable to move records to occupy the 
space freed by a deleted record, since doing so 
requires additional block accesses. Since 
insertions tend to be more frequent than 
deletions, it is acceptable to leave open the space 
occupied by the deleted record, and to wait for a 
subsequent insertion before reusing the space.
A simple marker on a deleted record is not 
sufficient, since it is hard to find this available 
space when an insertion is being done. Thus, we 
need to introduce an additional structure.



At the beginning of the file, we allocate a certain 
number of bytes as a file header. The header will 
contain a variety of information about the file. For 
now, all we need to store there is the address of the 
first record whose contents are deleted.

We use this first record to store the address of the 
second available record, and so on. Intuitively, we 
can think of these stored addresses as pointers, 
since they point to the location of a record. 

The deleted records thus form a linked list, which is
often referred to as a free list.



On insertion of a new record, we use the record 
pointed to by the header.

We change the header pointer to point to the 
next available record. If no space is available, we 
add the new record to the end of the file.

Insertion and deletion for files of fixed-length 
records are simple to implement, because the 
space made available by a deleted record is 
exactly the space needed to insert a record.





Variable-Length Records

Variable-length records arise in database 
systems in several ways:
• Storage of multiple record types in a file.
• Record types that allow variable lengths for one 
or more fields.
• Record types that allow repeating fields, such as 
arrays or multisets.



Different techniques for implementing variable-
length records exist. Two different
problems must be solved by any such technique:
• How to represent a single record in such a way 
that individual attributes can be extracted easily.
• How to store variable-length records within a 
block, such that records in a block can be 
extracted easily



The representation of a record with variable-length 
attributes typically has two parts: an initial part with 
fixed length attributes, followed by data for variable-
length attributes. 

Fixed-length attributes, such as numeric values, dates, or 
fixed length character strings are allocated as many 
bytes as required to store their value.

Variable-length attributes, such as varchar types, are 
represented in the initial part of the record by a pair 
(offset, length), where offset denotes where the data for 
that attribute begins within the record, and length is the 
length in bytes of the variable-sized attribute.



The values for these attributes are stored
consecutively, after the initial fixed-length part 
of the record. Thus, the initial part of the record 
stores a fixed size of information about each 
attribute, whether it is fixed-length or variable-
length.



null bitmap, which indicates which attributes of 
the record have a null value. In this particular 
record, if the salary were null, the fourth bit of 
the bitmap would be set to 1, and the salary 
value stored
in bytes 12 through 19 would be ignored.

The slotted-page structure is commonly used for 
organizing variable length  records within a 
block



There is a header at the beginning of each block,
containing the following information:
1. The number of record entries in the header.
2. The end of free space in the block. 
3. An array whose entries contain the location 
and size of each record





The actual records are allocated contiguously in 
the block, starting from the end of the block. The 
free space in the block is contiguous, between 
the final entry in the header array, and the first 
record. If a record is inserted, space is allocated 
for it at the end of free space, and an entry 
containing its size and location is added to the 
header.

If a record is deleted, the space that it occupies is 
freed, and its entry is set to deleted (its size is set 
to 1, for example).−



Organization of Records in Files

Several of the possible ways of organizing 
records in files are:

Heap file organization. Any record can be 
placed anywhere in the file where there is space 
for the record. There is no ordering of records. 
Typically, there is a single file for each relation.

 Sequential file organization. Records are 
stored in sequential order, according to the value 
of a “search key”of each record



Hashing file organization. A hash function is 
computed on some attribute of each record. The 
result of the hash function specifies in which 
block of the file the record should be placed.

Generally, a separate file is used to store the 
records of each relation. However, in a 
multitable clustering file organization, records of 
several different relations are stored in the same 
file



Sequential File Organization

A sequential file is designed for efficient processing 
of records in sorted order based on some search key. 

A search key is any attribute or set of attributes; it
need not be the primary key, or even a superkey. 

To permit fast retrieval of records in search-key 
order, we chain together records by pointers. 

The pointer in each record points to the next record 
in search-key order. Furthermore, to minimize the 
number of block accesses in sequential file 
processing, we store records physically in search-key 
order, or as close to search-key order as possible.



The sequential file organization allows records to be 
read in sorted order; that can be useful for display 
purposes, as well as for certain query-processing
algorithms.

For insertion, we apply the following rules:
1. Locate the record in the file that comes before the 
record to be inserted in search-key order.
2. If there is a free record (that is, space left after a 
deletion) within the same block as this record, 
insert the new record there. Otherwise, insert the 
new record in an overflow block. In either case, 
adjust the pointers so as to chain together the 
records in search-key order.



multitable clustering file organization 

A multitable clustering file organization is a file 
organization, such as that stores related records 
of two or more relations in each block. Such a 
file organization allows us to read records that 
would satisfy the join condition by using one 
block read. Thus, we are able to process this 
particular query more efficiently



Indexing and Hashing

Basic Concepts
An index for a file in a database system works in 

much the same way as the index of textbook.
Database-system indices play the same role as 

book indices in libraries. For example, to retrieve 
a student record given an ID, the database 
system would look up an index to find on which 
disk block the corresponding record resides, and 
then fetch the disk block, to get the appropriate 
student record.



Keeping a sorted list of students’ ID would not 
work well on very large databases with 
thousands of students, since the index would 
itself be very big;
further, even though keeping the index sorted 
reduces the search time, finding a student can 
still be rather time-consuming. Instead, more 
sophisticated indexing techniques may be used.



There are two basic kinds of indices:
Ordered indices. Based on a sorted ordering of 

the values.
Hash indices. Based on a uniform distribution 

of values across a range of buckets. The bucket to 
which a value is assigned is determined by a 
function,
called a hash function.



several techniques for both ordered indexing and 
hashing.

Each technique must be evaluated on the basis of 
these factors:

Access types: The types of access that are supported 
efficiently. Access types can include finding records 
with a specified attribute value and finding records 
whose attribute values fall in a specified range.
• Access time: The time it takes to find a particular 
data item, or set of items, using the technique in 
question.



Insertion time: The time it takes to insert a new data 
item. This value includes the time it takes to find the 
correct place to insert the new data item, as well
as the time it takes to update the index structure.

Deletion time: The time it takes to delete a data item. 
This value includes the time it takes to find the item 
to be deleted, as well as the time it takes to update 
the index structure.
• Space overhead: The additional space occupied by 
an index structure. Provided that the amount of 
additional space is moderate, it is usually worth 
while to sacrifice the space to achieve improved 
performance.



We often want to have more than one index for 
a file.

An attribute or set of attributes used to look up 
records in a file is called a search key.



1.Ordered Indices

To gain fast random access to records in a file, we 
can use an index structure. 

Each index structure is associated with a particular 
search key. Just like the index of a book or a library 
catalog, an ordered index stores the values of the 
search keys in sorted order, and associates with 
each search key the records that contain it.

The records in the indexed file may themselves be 
stored in some sorted order, just as books in a 
library are stored according to some attribute.



file may have several indices, on different search 
keys. If the file containing the records is 
sequentially ordered, a clustering index is an 
index whose search key also defines the 
sequential order of the file.

Clustering indices are also called primary 
indices

Indices whose search key specifies an order 
different from the sequential order of the file are 
called nonclustering indices, or secondary 
indices





1.1 Dense and Sparse Indices

An index entry, or index record, consists of a 
search-key value and pointers to one or more 
records with that value as their search-key value. 

The pointer to a record consists of the identifier 
of a disk block and an offset within the disk 
block
to identify the record within the block.

There are two types of ordered indices that we 
can use:



Dense index: In a dense index, an index entry 
appears for every search-key value in the file. In a 
dense clustering index, the index record contains the 
search-key value and a pointer to the first data record 
with that search-key value. 

The rest of the records with the same search-key 
value would be stored sequentially after the first 
record, since, because the index is a clustering one, 
records are sorted on the same search key. In a dense 
nonclustering index, the index must store a list of 
pointers to all records with the same search-key value



Sparse index: In a sparse index, an index entry 
appears for only some of the search-key values. 
Sparse indices can be used only if the relation is 
stored in sorted order of the search key, that is, if 
the index is a clustering index.







multilevel indices

Indices with two or more levels are called 
multilevel indices.



B+-Tree Index Files

The B+ tree is a balanced binary search tree. It 
follows a multi-level index format.

In the B+ tree, leaf nodes denote actual data 
pointers. B+ tree ensures that all leaf nodes 
remain at the same height.

In the B+ tree, the leaf nodes are linked using a 
link list. Therefore, a B+ tree can support 
random access as well as sequential access.



The main disadvantage of the index-sequential file 
organization is that performance degrades as the 
file grows.

The B+-tree index structure is the most widely used 
of several index structures that maintain their 
efficiency despite insertion and deletion of data.

 A B+-tree index takes the form of a balanced tree 
in which every path from the root of the tree to a 
leaf of the tree is of the same length. Each nonleaf 
node in the tree has between [n/2] and n children, 
where n is fixed for a particular tree.



Structure of a B+-Tree

In the B+ tree, every leaf node is at equal 
distance from the root node. The B+ tree is of the 
order n where n is fixed for every B+ tree. 

It contains an internal node and leaf node.



A B +-tree index is a multilevel index, but it has a 
structure that differs from that of the multilevel 
index-sequential file.

It contains up to n  1 search-key values K1,K2,...,Kn −
 1, and n pointers P1,P2,...,Pn. The search-key −

values within a node are kept in sorted order; thus,
if i <j , then Ki <K j 



We consider first the structure of the leaf nodes. 
For i = 1,2,...,n 1, pointer Pi points to a file record −

with search-key value Ki . Pointer Pn has a 
special purpose

Since there is a linear order on the leaves based 
on the search-key values that they contain, we 
use Pn to chain together the leaf nodes in search-
key order. This ordering allows for efficient 
sequential processing of the file.





The nonleaf nodes of the B+-tree form a multilevel 
(sparse) index on the leaf nodes. 

The structure of nonleaf nodes is the same as that 
for leaf nodes, except that all pointers are pointers 
to tree nodes. 

A nonleaf node may hold up to n pointers, and must 
hold at least [n/2] pointers. 

The number of pointers in a node is called the 
fanout of the node. 

Nonleaf nodes are also referred to as internal nodes.





These examples of B+-trees are all balanced. 
That is, the length of every path from the root to 
a leaf node is the same. 

This property is a requirement for a B+tree. 
Indeed, the “B”in B+-tree stands for “balanced.”

It is the balance property of B+-trees that 
ensures good performance for lookup, insertion, 
and deletion.
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Hashing –Statuc hashing

One disadvantage of sequential file organization 
is that we must access an index structure to 
locate data.

File organizations based on the technique of 
hashing allow us to avoid accessing an index 
structure.

In our description of hashing, we shall use the 
term bucket to denote a unit of storage that can 
store one or more records.

 A bucket is typically a disk block, but could be 
chosen to be smaller or larger than a disk block



let K denote the set of all search-key values, and 
let B denote the set of all bucket addresses. A 
hash function h is a function from K to B. Let h 
denote
a hash function.

To insert a record with search key Ki , we 
compute h(Ki ), which gives the address of the 
bucket for that record.

To perform a lookup on a search-key value Ki , 
we simply compute h(Ki ), then search the bucket 
with that address. 



Suppose that two search keys, K5 and K7, have 
the same hash value; that is, h(K5) = h(K7). 

If we perform a lookup on K5, the bucket h(K5) 
contains records with search-key values K5 and 
records with search-key values K7. 

Thus, we have to check the search-key value of 
every record in the bucket to verify that the 
record is one that we want.



Deletion is equally straightforward. If the 
search-key value of the record to be deleted is 
Ki , we compute h(Ki ), then search the 
corresponding bucket for that
record, and delete the record from the bucket.



Hashing can be used for two different purposes. 
In a hash file organization, we obtain the 
address of the disk block containing a desired 
record directly by
computing a function on the search-key value of 
the record.

 In a hash index organization we organize the 
search keys, with their associated pointers, into a
hash file structure.



Hash Functions

An ideal hash function distributes the stored 
keys uniformly across all the buckets, so that 
every bucket has the same number of records.

Since we do not know at design time precisely 
which search-key values will be stored in the file, 
we want to choose a hash function that assigns 
search-key
values to buckets in such a way that the 
distribution has these qualities:
 The distribution is uniform.
 The distribution is random





Hash functions require careful design. A bad 
hash function may result in lookup taking time 
proportional to the number of search keys in the 
file. A well designed function gives an average-
case lookup time that is a (small) constant,
independent of the number of search keys in the 
file



Handling of Bucket Overflows

If the bucket does not have enough space,
a bucket overflow is said to occur. Bucket overflow can 
occur for several reasons:

Insufficient buckets. 
The number of buckets, which we denote nB , must be 

chosen such that nB >nr /fr , where nr denotes the total 
number of records that will be stored and fr denotes 
the number of records that will fit in a bucket. This 
designation, of course, assumes that the total number 
of records is known when the hash function is chosen.



 Skew. Some buckets are assigned more records 
than are others, so a bucket may overflow even 
when other buckets still have space.

 This situation is called bucket skew.
 Skew can occur for two reasons:

1. Multiple records may have the same search 
key.
2. The chosen hash function may result in 
nonuniform distribution of search keys



So that the probability of bucket overflow is 
reduced, the number of buckets is chosen to be 
(nr /fr )  (1 + d), where d is a fudge factor, ∗
typically around 0.2.
Some space is wasted: About 20 percent of the 
space in the buckets will be empty. But the 
benefit is that the probability of overflow is 
reduced.



Despite allocation of a few more buckets than 
required, bucket overflow can still occur. 

We handle bucket overflow by using overflow 
buckets. If a record must be inserted into a bucket 
b, and b is already full, the system provides an 
overflow bucket for b, and inserts the record into 
the overflow bucket. 

If the overflow bucket is also full, the system 
provides another overflow bucket, and so
on. All the overflow buckets of a given bucket are 
chained together in a linked list,



Overflow handling using such a linked list is 
called overflow chaining.



We must change the lookup algorithm slightly to 
handle overflow chaining.
As before, the system uses the hash function on 
the search key to identify a bucket b. The system 
must examine all the records in bucket b to see 
whether they match the search key, as before. In 
addition, if bucket b has overflow buckets, the 
system
must examine the records in all the overflow 
buckets also.

The form of hash structure is closed hashing.



Under an alternative approach, called open 
hashing, the  set of buckets is fixed, and there are 
no overflow chains. Instead, if a bucket is full, 
the system inserts records in some other bucket 
in the initial set of buckets B.
One policy is to use the next bucket (in cyclic 
order) that has space; this policy is called linear 
probing.



Dynamic Hashing

the need to fix the set B of bucket addresses presents a 
serious problem with the static hashing technique.

Most databases grow larger over time. If we are to use 
static hashing for such a database, we have
three classes of options: 

1. Choose a hash function based on the current file size
2. Choose a hash function based on the anticipated size 

of the file at some point
in the future

3. Periodically reorganize the hash structure in 
response to file growth.



Several dynamic hashing techniques allow the hash 
function to be modified dynamically to accommodate 
the growth or shrinkage of the database.

Extendable hashing(dynamic hashing) copes with 
changes in database size by splitting and combining 
buckets as the database grows and shrinks. As a result, 
space efficiency is retained. 

With extendable hashing, we choose a hash function h 
with the desirable properties of uniformity and 
randomness. However, this hash function generates
values over a relatively large range—namely, b-bit 
binary integers. A typical value for b is 32.
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