
T R A N S A C T I O N M A N A G E M E N T & C O N C U R R E N C Y
C O N T RO L

ModuleIII

Transactions

Collections of operations that form a single
logical unit of work are called transactions.

A database system must ensure proper execution
of transactions despite failures—either the entire
transaction executes, or none of it does.

Transaction is a unit of program execution that
accesses and possibly updates various data
items.

What is a Transaction?

Any action that reads from and/or writes to a
database may consist of
 Simple SELECT statement to generate a list of table contents
 A series of related UPDATE statements to change the values

of attributes in various tables
 A series of INSERT statements to add rows to one or more

tables
 A combination of SELECT, UPDATE, and INSERT

statements

What is a Transaction?

A logical unit of work that must be either entirely
completed or aborted

Successful transaction changes the database from
one consistent state to another
 One in which all data integrity constraints are satisfied

Most real-world database transactions are formed
by two or more database requests
 The equivalent of a single SQL statement in an application

program or transaction

Evaluating Transaction Results

Not all transactions update the database
SQL code represents a transaction because

database was accessed
Improper or incomplete transactions can have a

devastating effect on database integrity
 Some DBMSs provide means by which user can define

enforceable constraints based on business rules
 Other integrity rules are enforced automatically by the

DBMS when table structures are properly defined,
thereby letting the DBMS validate some transactions

Transaction Properties(ACID properties)

Atomicity
 Requires that all operations (SQL requests) of a transaction

be completed; if not, then the transaction is aborted
 A transaction is treated as a single, indivisible, logical unit of

work
 This “all-or-none” property is referred to as atomicity.

Consistency
 Consistency property ensures that the database must

remain in the consistent state before the start of
transaction and after the transaction is over.

 Consistency states that only valid data will be written to
the database.

 If for some reason a transaction is executed that violates
the database consistency rules the entire transaction
will be rolled back.

Isolation
 Data used during execution of a transaction cannot

be used by second transaction until first one is
completed

 Even though multiple transactions may execute
concurrently, the system guarantees that, for every
pair of transactions Ti and Tj , it appears to Ti that
either Tj finished execution before Ti started, or Tj
started execution after Ti finished.

 Durability

 After a transaction completes successfully, the changes it
has made to the database persist, even if there are system
failures.

 Durability can be implemented by writing all transaction
into a transaction log that can be used to crate a system
state right before failure.

 A transaction can only regard as committed after it is
written safely in the log.

 For example, in an application that transfers funds from
one account to another, the durability property ensures
that the changes made to each account will not be
reversed.

These properties are called the ACID properties.

Transaction State
A transaction must be in one of the following states:

Active:-
 The initial state; the transaction stays in this

state while it is executing.
 Partially committed:-

 After the final statement has been executed.
 Failed:-

 After the discovery that normal execution can
no longer proceed.

Transaction State
Aborted:-

 After the transaction has been rolled back and
the database has been restored to its state prior
to the start of the transaction

 Committed:-
 After successful completion

Transaction Management with SQL

ANSI has defined standards that govern SQL
database transactions

Transaction support is provided by two SQL
statements: COMMIT and ROLLBACK

ANSI standards require that, when a transaction
sequence is initiated by a user or an application
program,it must continue through all succeeding
SQL statements until one of four events occurs

Transaction Management with SQL

1. A COMMIT statement is reached- all changes are
permanently recorded within the database

2. A ROLLBACK is reached – all changes are aborted
and the database is restored to a previous
consistent state

3. The end of the program is successfully reached –
equivalent to a COMMIT

4. The program abnormally terminates and a
rollback occurs

The Transaction Log

Keeps track of all transactions that update the
database. It contains:
 A record for the beginning of transaction
 For each transaction component (SQL statement)

 Type of operation being performed (update, delete,
insert)

 Names of objects affected by the transaction (the name
of the table)

 “Before” and “after” values for updated fields
 Pointers to previous and next transaction log entries for

the same transaction
 The ending (COMMIT) of the transaction

 Increases processing overhead but the ability to restore a
corrupted database is worth the price

The Transaction Log

 Increases processing overhead but the ability to
restore a corrupted database is worth the price

 If a system failure occurs, the DBMS will
examine the log for all uncommitted or
incomplete transactions and it will restore the
database to a previous state

 The log it itself a database and to maintain its
integrity many DBMSs will implement it on
several different disks to reduce the risk of
system failure

A Transaction Log

Transactions and schedules

A transaction is seen by the dbms as a series or
list of actions.

Actions include read and writes of database
object.

Assume that an object O is always read into a
program variable that is also named O

Denote transaction T reading an object O as
RT(O)

Similarly writing as WT(O)

Each transaction must specify as its final action
either commit or abort

AbortT and CommitT
Schedule is a list of actions from a set of

transactions,
Schedule represents an actual or potential

execution sequence.

T1 T2
 R(A)
 W(A)

R(B)
W(B)

 R(C)
 W(C)

A schedule that contains either abort or commit
for each transactions is called complete
schedule.

If transactions are executed from start to
finish,one by one----serial schedule

Concurrent execution of Transactions

Transaction processing system usually allow
multiple transaction to run concurrently.

Allowing multiple transaction to run concurrently
and allowing multiple transaction to update data
concurrently causes several complications with
consistency of data.

Ensuring consistency with concurrency require an
extra work.

Concurrent execution of Transactions

Two reasons to allow concurrency are:-
 Improve throughput and resource utilization:-(Throughput –

Number of transactions that can be executed in a given
amount of time.)

 Reduced waiting time.

There may be a mix of transactions running on a
system, some short and some long.

If transactions are run serially, a short transaction
may have to wait for a preceding long transaction to
complete, which can lead to unpredictable delays in
running a transaction.

But concurrent execution reduces the unpredictable
delays in running transactions.

TYPES OF SCHEDULE
1. Serial Schedule
2. Non-serial Schedule
3. Serializable schedule

1. Serial Schedule

The serial schedule is a type of schedule where one
transaction is executed completely before starting
another transaction.

In the serial schedule, when the first transaction
completes its cycle, then the next transaction is
executed.

For example: Suppose there are two transactions T1
and T2 which have some operations.

Execute all the operations of T1 which was followed
by all the operations of T2.

Execute all the operations of T2 which was followed
by all the operations of T1.

In the given (a) figure, Schedule A shows the serial
schedule where T1 followed by T2.

In the given (b) figure, Schedule B shows the serial
schedule where T2 followed by T1.

If it has no interleaving of operations, then there are
the following two possible outcomes:

2. Non-serial Schedule/ Concurrent
Execution

If interleaving of operations is allowed, then there
will be non-serial schedule.

It contains many possible orders in which the system
can execute the individual operations of the
transactions.

In the given figure (c) and (d), Schedule C and
Schedule D are the non-serial schedules. It has
interleaving of operations.

Non-serial Schedule

Problems with Concurrent Execution

In a database transaction, the two main operations
are READ and WRITE operations. So, there is a need
to manage these two operations in the concurrent
execution of the transactions.

following problems occur with the Concurrent
Execution of the operations:

Problem 1: Lost Update Problems (W - W Conflict)
Dirty Read Problems (W-R Conflict)
Unrepeatable Read Problem (W-R Conflict)/

Inconsistent Retrievals Problem

Problem 1: Lost Update Problems (W - W Conflict)

The problem occurs when two different database
transactions perform the read/write operations on
the same database items in an interleaved manner
(i.e., concurrent execution) that makes the values
of the items incorrect hence making the database
inconsistent.

Consider the below diagram where two
transactions TX and TY, are performed on the
same account A where the balance of account
A is $300.

At time t1, transaction TX reads the value of account A,
i.e., $300 (only read).

At time t2, transaction TX deducts $50 from account A
that becomes $250 (only deducted and not
updated/write).

Alternately, at time t3, transaction TY reads the value of
account A that will be $300 only because TX didn't
update the value yet.

At time t4, transaction TY adds $100 to account A that
becomes $400 (only added but not updated/write).

At time t6, transaction TX writes the value of account A
that will be updated as $250 only, as TY didn't update
the value yet.

Similarly, at time t7, transaction TY writes the values of
account A, so it will write as done at time t4 that will be
$400. It means the value written by TX is lost, i.e., $250 is
lost.

Hence data becomes incorrect, and database sets to
inconsistent.

Dirty Read Problems (W-R Conflict) / Uncommitted Data

The dirty read problem occurs when one
transaction updates an item of the database, and
somehow the transaction fails, and before the
data gets rollback, the updated database item is
accessed by another transaction. There comes the
Read-Write Conflict between both transactions.

At time t1, transaction TX reads the value of account A, i.e., $300.
At time t2, transaction TX adds $50 to account A that becomes

$350.
At time t3, transaction TX writes the updated value in account A,

i.e., $350.
Then at time t4, transaction TY reads account A that will be read

as $350.
Then at time t5, transaction TX rollbacks due to server problem,

and the value changes back to $300 (as initially).
But the value for account A remains $350 for transaction TY as

committed, which is the dirty read and therefore known as the
Dirty Read Problem.

Unrepeatable Read Problem (W-R Conflict) / Inconsistent
Retrievals Problem

Also known as Inconsistent Retrievals Problem
that occurs when in a transaction, two different
values are read for the same database item.

Serializability

When multiple transactions run concurrently,
then it may give rise to inconsistency of the
database.

Serializability is a concept that helps to identify
which non-serial schedules are correct and will
maintain the consistency of the database.

If a given schedule of ‘n’ transactions is found to
be equivalent to some serial schedule of ‘n’
transactions, then it is called as a serializable
schedule.

Difference between Serial Schedules and Serializable Schedules-

The only difference between serial schedules
and serializable schedules is that-

In serial schedules, only one transaction is
allowed to execute at a time i.e. no concurrency
is allowed.

Whereas in serializable schedules, multiple
transactions can execute simultaneously i.e.
concurrency is allowed.

Types of Serializability

Conflict Serializability

A schedule is called conflict serializable if it can
be transformed into a serial schedule by
swapping non-conflicting operations.

Let us consider a schedule S in which there are
two consecutive instructions ,Ii and Ij of
transactions Ti and Tj ,respectively(i!=j).

If Ii and Ij refer to different data items ,then we
can swap Ii and Ij ,without affecting the results of
any instruction in the schedule.

However ,if Ii and Ij refer to the same data item
Q,then the order of the two steps may matter.

 There are four cases we need to
consider

 Ii=read(Q) ,Ij =read(Q), the order of Ii
and Ij does not matter

 Ii=read(Q) ,Ij =Write(Q),
If Ii comes before Ij ,then Ti doesnot read the

value of Q that is written by Tj in instruction
Ij.thus the order of Ii and Ij matters

 Ii=Write(Q) ,Ij =read(Q), the order of Ii
and Ij matter

 Ii=write(Q) ,Ij =write(Q), the order of Ii
and Ij does not matter,how ever the
value obtained by the next read(Q)instn
is affected.

If a schedule S can be transformed into a
schedule S’ by a series of swaps of non-
conflicting instructions ,we say that S and S’ are
conflit equivalent.

A Schedule S is conflict serializable if it is conflict
equivalent

A schedule is called conflict serializable if it can be
transformed into a serial schedule by swapping non-
conflicting operations.

 Two operations are said to be conflicting if all
conditions satisfy:
 They belong to different transactions
 They operate on the same data item
 At Least one of them is a write operation

Precedence Graph

Precedence Graph or Serialization Graph is used
commonly to test Conflict Serializability of a
schedule.

It is a directed Graph (V, E) consisting of a set of
nodes V = {T1, T2, T3……….Tn} and a set of directed
edges E = {e1, e2, e3………………em}.

The graph contains one node for each Transaction
Ti.

An edge ei is of the form Tj –> Tk.

where Tj is the starting node of ei and Tk is the
ending node of ei.

An edge ei is constructed between nodes Tj to Tk if
one of the operations in Tj appears in the schedule
before some conflicting operation in Tk .

ALGORITHM
Create a node T in the graph for each participating

transaction in the schedule.
Check for conflicting instructions in the schedule:-

 For the conflicting operation read_item(X) and write_item(X)
(RW Conflict) – If a Transaction Ti executes a read_item (X)
after Tj executes a write_item (X), draw an edge from Ti to Tj in
the graph.

 For the conflicting operation write_item(X) and read_item(X)
(i.e WR conflict) – If a Transaction Ti executes a write_item (X)
after Tj executes a read_item (X), draw an edge from Ti to Tj in
the graph.

ALGORITHM
 For the conflicting operation write_item(X) and

write_item(X) (i.e WW conflict)– If a Transaction Tj executes
a write_item (X) after Ti executes a write_item (X), draw an
edge from Ti to Tj in the graph.

 The Schedule S is serializable if there is no cycle in the
precedence graph.

If there is no cycle in the precedence graph, it means
we can construct a serial schedule S’ which is
conflict equivalent to the schedule S.

PROBLEM 1

SOLUTION

Clearly, there exists a cycle in the precedence graph.

Therefore, the given schedule S is not conflict serializable.

Example: conflict serializable and conflict
equivalent

CONFLICT EQUIVALENT
Using precedence graph we found that the schedule

3 is conflict serializable since no cycles formed in
graph.

If a schedule S can be transformed into a schedule S’
by a series of swapping of non conflicting instruction
,then we can say S and S’ are conflict equivalent.

Adjacent non conflicting pairs are swapped by
position

Example :CONFLICT EQUIVALENT

Consider schedule 3 which is conflict
serializable.

Example :conflict equivalent(conti..)
To find the conflict equivalent of the schedule 3 we

need to perform certain swapping, i.e swapping of
positions of non conflicting adjacent instructions
in T1 and T2

Example :conflict equivalent(conti..)
After a series of swapping we will get a serial

schedule which is conflict equivalent of schedule 3.

Question: Consider the following schedules
involving two transactions. Which one of the
following statement is true?

S1: R1(X) R1(Y) R2(X) R2(Y) W2(Y) W1(X)
S2: R1(X) R2(X) R2(Y) W2(Y) R1(Y) W1(X)

Both S1 and S2 are conflict serializable
Only S1 is conflict serializable
Only S2 is conflict serializable
None

 Only S2 is conflict serializable.

View Serializability

If a given schedule is found to be view equivalent to
some serial schedule, then it is called as a view
serializable schedule.

View Equivalent Schedules-
Consider two schedules S1 and S2 each consisting of

two transactions T1 and T2.

Two schedules S1 and S2 are said to be view
equivalent if below conditions are satisfied .
 1. Initial Read
 2. Updated Read
 3. Final Write

1. Initial Read
An initial read of both schedules must be the same.

Suppose two schedule S1 and S2. In schedule S1, if a
transaction T1 is reading the data item A, then in S2,
transaction T1 should also read A.

2. Updated Read
In schedule S1, if Ti is reading A which is updated by

Tj then in S2 also, Ti should read A which is updated
by Tj.

3. Final Write
A final write must be the same between both the

schedules. In schedule S1, if a transaction T1 updates
A at last then in S2, final writes operations should
also be done by T1.

Condition 1 and 2 ensure that each transaction
reads the same value in both schedules S1 and
S2(so perform same computation).

Condition 3 together with conditions 1 and 2
ensures both schedules result in same final state.

Every conflict serializable schedule is also view
serializable .

But all view serializable are not conflict
serializable.

Blind writes appear in any view serializable
schedule that is not conflict serializable.

View serializability

If a given schedule is found to be view
equivalent to some serial schedule, then it is
called as a view serializable schedule..

Consider two schedules S1 and S2 each
consisting of two transactions T1 and T2.
Schedules S1 and S2 are called view equivalent if
the following three conditions hold true for
them-

1.For each data item Q,if transaction Ti reads the
initial value of Q in schedule S,then transaction Ti
must in schedule S’’ also read the initial value of Q.
 “Initial reads must be same for all data items”

If transaction Ti reads a data item that has been
updated by the transaction Tj in schedule S1, then in
schedule S2 also, transaction Ti must read the same
data item that has been updated by transaction Tj.
 “Write-read sequence must be same.”.

For each data item Q ,the transaction that
perform the final write(Q) operation in schedule
S must perform the final Write(Q) operation in
schedule in S”.
 “Final writers must be same for all data items”.

How to check whether a given schedule is view serializable or not?

Method-01:

Check whether the given schedule is conflict
serializable or not.

If the given schedule is conflict serializable, then
it is surely view serializable.

If the given schedule is not conflict serializable,
then it may or may not be view serializable. Go
and check using other methods.

Method-02:
Check if there exists any blind write operation

(writing without reading a value is known as a
blind write).

If there does not exist any blind write, then the
schedule is surely not view serializable. Stop and
report your answer.

If there exists any blind write, then the schedule
may or may not be view serializable. Go and
check using other methods.

Method-03:
 In this method, try finding a view equivalent

serial schedule.

EXAMPLE :

To check whether S is view serializable:-

EXAMPLE:SOLUTION

 EXAMPLE:- solution

Step 1: final updation on data items

In both schedules S and S1, there is no read except the initial read that's
why we don't need to check that condition.

Step 2: Initial Read

The initial read operation in S is done by T1 and in S1, it is also done by
T1.

Step 3: Final Write

The final write operation in S is done by T3 and in S1, it is also done by
T3. So, S and S1 are view Equivalent.

EXAMPLE:-SOLUTION (conti..)

The first schedule S1 satisfies all three
conditions, so we don't need to check another
schedule.

Hence, view equivalent serial schedule of S is
S1:

 T1 T2 T3 → →

Irrecoverable Schedules-

If in a schedule,
 A transaction performs a dirty read operation from an

uncommitted transaction
 And commits before the transaction from which it has read the

value then such a schedule is known as an Irrecoverable
Schedule.

Example:Irrecoverable schedule

Example: Irrecoverable schedule

In the above example
 T2 performs a dirty read operation.
 T2 commits before T1.
 T1 fails later and roll backs.
 The value that T2 read now stands to be incorrect.
 T2 can not recover since it has already committed.
 So the above schedule is an irrecoverable schedule.

Recoverable Schedules-

If in a schedule,

 A transaction performs a dirty read operation from an
uncommitted transaction.

 And its commit operation is delayed till the uncommitted
transaction either commits or roll backs then such a schedule
is known as a Recoverable Schedule.

EXAMPLE: Recoverable Schedules-

In the above example T2 performs a dirty
read operation.

The commit operation of T2 is delayed till
T1 commits or roll backs.

T1 commits later.

T2 is now allowed to commit.

In case, T1 would have failed, T2 has a chance to
recover by rolling back.

Since the commit operation of the transaction that
performs the dirty read is delayed.

This ensures that it still has a chance to recover if
the uncommitted transaction fails later.

Recoverable schedule

Two types:
 Cascadeless schedule
 Cascading schedule

CASCADING SCHEDULE
Even if a schedule is recoverable ,to recover

correctly from failure of transaction Ti, we may have
to roll back several transaction.

Such situations occur if transactions have read data
written by Ti.

In the above example ,transaction T8 has been
aborted.

T8 must be rolled back.

 Since T9 is dependent on T8, T9 must be rolled back.
Since T10 is dependent on T9, T10 must be rolled
back.

The phenomenon, in which a single transaction
failure leads to a series of transaction rollbacks, is
called cascading rollback.

Cascading rollback is undesirable, since it leads to
the undoing of a significant amount of work.

Cascadeless schedule
A cascadeless schedule is one where, for each pair of

transactions Ti and Tj such that Tj reads a data item
previously written by Ti , the commit operation of Ti
appears before the read operation of Tj.

This type of schedule is called cascadeless
schedule.

CONCURRENCY CONTROL IN
DATABASES

CONCURRENCY CONTROL
When several transactions execute concurrently in

the database, however, the isolation property may no
longer be preserved.

To ensure it, the system must control the interaction
among the concurrent transactions; this control is
achieved through one of a variety of mechanisms
called concurrency control schemes.

Concurrency control can be performed by the dbms
with various methods such as locking methods,
timestamp methods, etc.

Concurrency problems in DBMS Transactions

When multiple transactions execute concurrently in
an uncontrolled or unrestricted manner, then it
might lead to several problems.

 These problems are commonly referred to as
concurrency problems in database environment.

Lock based protocol
One way to achieve serializability is to access data

items in a mutually exclusive manner.

That is ,when a transaction is accessing a data item
no other transaction is allowed to modify that data
item.

This can be achieved by holding a lock on the data
item.

Locks
Modes in which a data item may be locked.

 Shared mode
 Exclusive mode

Shared mode
If a transaction Ti has obtained a shared –mode

lock(denoted by S) on item Q, then Ti can read, but
cannot write Q.

Any other transaction can obtain the same lock, on
same data item at same time.

Denoted by Lock-S(Q)

Locks

Exclusive mode
If a transaction Ti has obtained an exclusive-mode

lock(denoted by X) on item Q, then Ti can both read
and write Q.

Any other transaction cannot obtain either
exclusive/shared lock.

Denoted by lock –X(Q)

Lock compatibilty

A transaction requests a shared lock on data item Q
by executing the lock-S(Q) instruction.

 Similarly, a transaction requests an exclusive lock
through the lock-X(Q) instruction.

 A transaction can unlock a data item Q by the
unlock(Q) instruction.

To access a data item, transaction Ti must first lock
that item.

If the data item is already locked by another
transaction in an incompatible mode, the
concurrency control manager will not grant the lock
until all incompatible locks held by other
transactions have been released.

Thus, Ti is made to wait until all incompatible locks
held by other transactions have been released.

Granting of locks
When a transaction requests a lock on a data item in

a particular mode, and no other transaction has a
lock on the same data item in a conflicting mode,
the lock can be granted.

Some times a transaction may be starved.

We can avoid starvation of transaction by granting
locks in the following manner.

When a transaction Ti requests a lock on a data item
Q in a particular mode M, the concurrency-control
manager grants the lock provided that,

 1.There is no other transaction holding a lock on Q in a mode
that conflict with M.

 2.There is no other transaction that is waiting for a lock on Q
and that made its lock request before Ti.

T1:lock-X(B);
 read (B);
 B:=B-50;
 write(B);
 unlock(B);
 lock-X(A);
 read(A);
 A:=A+50;
 write(A);
 unlock(A);

T2:lock-S(A)
 read(A)
 unlock(A)
 lock-S(B)
 read(B)
 unlock(B)
 display(A+B)

T1 T2 Concurency-cntrl
manager

Lock-X(B) Grant-X(B,T!)
Read(B)
B:=B-50
Wite(B)
Unlock(B)

Lock-S(A) Grant-S(A,T2)
Read(A)
Unlock(A)
Lock-S(B)

Grant-S(B,T2)
Read
B,unlock(B),display(
A+B)

Lock-X(A) Grant-X(A,T1)
Read(A)
A:=A+50
Write(A)
Unlock(A)

Two - Phase Locking (2PL)

Two-Phase locking protocol which is also known as a
2PL protocol.

This protocol ensures conflict serializability.

This protocol consists of 2 phases:
Growing phase
Shrinking phase

phases
Growing phase- A transaction may obtain

locks but may not release any locks.

The point in schedule transaction had
obtained its final lock is called locking
point(end of growing phase.

Shrinking phase-A transaction may release
locks but may not get any new locks in this
phase.

Initially transaction is in the growing phase.The
transaction acquires locks as needed.

Once the transaction releases a lock it enters the
shrinking phase and cannot issue any lock requests.

Example

Two phase locking does not ensure freedom from
deadlock.

Cascading rollback may occur under two-phase
locking.

Cascading rollbacks can be avoided by a
modification of two-phase locking called the strict
two-phase locking protocol.

Deadlock in 2PL
T3 is holding an exclusive mode lock on B and T4 is

requesting a shared-mode lock on B, T4 is waiting for
T3 to unlock B.

 Similarly, since T4 is holding a shared-mode lock on A
and T3 is requesting an exclusive-mode lock on A, T3 is
waiting for T4 to unlock A.

We have arrived at a state where neither of these
transactions can ever proceed with its normal
execution. This situation is called deadlock.

When deadlock occurs, the system must roll back one
of the two transactions.

Deadlock are necessary evil associated with locking,
if we want to prevent inconsistent states.

The first phase of Strict-2PL is same as 2PL. After
acquiring all the locks in the first phase, the
transaction continues to execute normally. But in
contrast to 2PL, Strict-2PL does not release a lock
after using it. Strict-2PL holds all the locks until the
commit point and releases all the locks at a time

Concurrency Control Based on Timestamp
Ordering

Another method for determining the serializability
order is to select an ordering among transactions.

 The most common method for doing so is to use a
timestamp-ordering scheme.

TIMESTAMPS
With each transaction Ti in the system, we associate

a unique fixed timestamp, denoted by TS(Ti).

This timestamp is assigned by the database system
before the transaction Ti starts execution.

If a transaction Ti has been assigned timestamp
TS(Ti), and a new transaction Tj enters the system,
then TS(Ti) < TS(Tj).

There are two simple methods for implementing this
scheme:

 Use the value of the system clock as the timestamp.A
transaction’s timestamp is equal to the value of the clock
when the transaction enters the system.

 Use a logical counter that is incremented after a new
timestamp has been assigned. A transaction’s timestamp is
equal to the value of the counter when the transaction enters
the system.

To implement this scheme, we associate with each
data item Q two timestamp values:

 W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfully.

 R-timestamp(Q) denotes the largest timestamp of any
transaction that executed read(Q) successfully.

These timestamps are updated whenever a new
read(Q) or write(Q) instruction is executed.

The Timestamp-Ordering Protocol
The timestamp-ordering protocol ensures that any

conflicting read and write operations are executed in
timestamp order.

This protocol operates as follows:
1. Suppose that transaction Ti issues read(Q).

a. If TS(Ti)<W-timestamp(Q), then Ti needs to read a value of Q that
was already overwritten. Hence, the read operation is rejected, and
Ti is rolled back.

b. If TS(Ti)>=W-timestamp(Q), then read (Q) is executed and R-
timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

Timestamp-Ordering Protocol(conti..)
2. Suppose that transaction Ti issues write(Q).

 a. If TS(Ti)< R-timestamp(Q) then the value of Q that Ti is
producing was needed previously, and the system assumed
that that value would never be produced. Hence, the system
rejects the write operation and rolls Ti back.

 b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q. Hence, the system rejects this write
operation and rolls Ti back.

 c. Otherwise, the system executes the write operation and sets
W-timestamp(Q) to TS(Ti).

Timestamp-Ordering Protocol(conti..)
If a transaction Ti is rolled back by the concurrency-

control scheme as result of issuance of either a read
or write operation, the system assigns it a new
timestamp and restarts it.

The timestamp-ordering protocol ensures conflict
serializability.

The protocol ensures freedom from deadlock, since
no transaction ever waits.

Deadlock

In a database, a deadlock is an unwanted situation
in which two or more transactions are waiting
indefinitely for one another to give up locks.

Deadlock Avoidance

When a database is stuck in a deadlock state, then it
is better to avoid the database rather than aborting
or restating the database.

This is a waste of time and resource.

Deadlock Detection

When a transaction waits indefinitely to obtain a
lock, then the DBMS should detect whether the
transaction is involved in a deadlock or not.

The lock manager maintains a Wait for the graph
to detect the deadlock cycle in the database.

Wait for Graph
This is the suitable method for deadlock detection.

 In this method, a graph is created based on the transaction
and their lock.

If the created graph has a cycle or closed loop, then there is
a deadlock.

The wait for the graph is maintained by the system for every
transaction which is waiting for some data held by the others.

The system keeps checking the graph if there is any cycle in
the graph.

Wait for Graph

Deadlock Prevention
Deadlock prevention method is suitable for a large

database.

 If the resources are allocated in such a way that
deadlock never occurs, then the deadlock can be
prevented.

Two schemes for deadlock prevention:
 Wait-Die scheme
 Wound wait scheme

Wait-Die scheme

In this scheme, If a transaction requests a resource
that is locked by another transaction, then the DBMS
simply checks the timestamp of both transactions
and allows the older transaction to wait until the
resource is available for execution.

There are two transactions Ti and Tj and let TS(T) is
a timestamp of any transaction T.

If T2 holds a lock by some other transaction and T1 is
requesting for resources held by T2 then the
following actions are performed by DBMS:

Wait-Die scheme

Check if TS(Ti) < TS(Tj) - If Ti is the older transaction and Tj has
held some resource, then it allows T1 to wait until resource is
available for execution. That means if a younger transaction
has locked some resource and an older transaction is waiting
for it, then an older transaction is allowed to wait for it till it is
available

If T1 is an older transaction and has held some resource with it
and if T2 is waiting for it, then T2 is killed and restarted later
with random delay but with the same timestamp. i.e. if the
older transaction has held some resource and the younger
transaction waits for the resource, then the younger
transaction is killed and restarted with a very minute delay
with the same timestamp.
This scheme allows the older transaction to wait but kills the
younger one.

Wound wait scheme

In wound wait scheme, if the older transaction
requests for a resource which is held by the younger
transaction, then older transaction forces younger
one to kill the transaction and release the resource.
After the minute delay, the younger transaction is
restarted but with the same timestamp.

If the older transaction has held a resource which is
requested by the Younger transaction, then the
younger transaction is asked to wait until older
releases it.

Optimistic Methods for Concurrency Control

The optimistic method of concurrency control is based
on the assumption that conflicts of database
operations are rare and that it is better to let
transactions run to completion and only check for
conflicts before they commit.

An optimistic concurrency control method is also
known as validation or certification methods.

No checking is done while the transaction is executing.
The optimistic method does not require locking or
timestamping techniques. Instead, a transaction is
executed without restrictions until it is committed.

In optimistic methods, each transaction moves
through the following phases:

Read phase.
Validation or certification phase.
Write phase.

(i) During read phase, the transaction reads the
database, executes the needed computations and
makes the updates to a private copy of the the
database values. All update operations of the
transactions are recorded in a temporary update file,
which is not accessed by the remaining transactions.

(ii) During the validation phase, the transaction is
validated to ensure that the changes made will not
affect the integrity and consistency of the database. If
the validation test is positive, the transaction goes to a
write phase. If the validation test is negative, he
transaction is restarted and the changes are discarded.

(iii) During the write phase, the changes are
permanently applied to the database.

Database Recovery
Management-Transaction Recovery

When a database fails it must possess the facilities for
fast recovery.

There are both automatic and non-automatic ways for
both, backing up of data and recovery from any failure
situations.

 The techniques used to recover the lost data due to
system crash, transaction errors, viruses, catastrophic
failure, incorrect commands execution etc. are database
recovery techniques.

So to prevent data loss recovery techniques based on
deferred update and immediate update or backing up
data can be used.

Recovery techniques are heavily dependent
upon the existence of a special file known as a
system log.

 It contains information about the start and end
of each transaction and any updates which occur
in the transaction.

The log keeps track of all transaction operations
that affect the values of database items.

This information is needed to recover from
transaction failure

The log is kept on disk start_transaction(T): This log
entry records that transaction T starts the
execution.

read_item(T, X): This log entry records that
transaction T reads the value of database item X.

write_item(T, X, old_value, new_value): This log
entry records that transaction T changes the value
of the database item X from old_value to
new_value. The old value is sometimes known as a
before an image of X, and the new value is known
as an afterimage of X.

commit(T): This log entry records that transaction T
has completed all accesses to the database successfully
and its effect can be committed (recorded
permanently) to the database.

abort(T): This records that transaction T has been
aborted

.checkpoint: Checkpoint is a mechanism where all the
previous logs are removed from the system and stored
permanently in a storage disk. Checkpoint declares a
point before which the DBMS was in consistent state,
and all the transactions were committed.

recovery process

Undoing – If a transaction crashes, then the
recovery manager may undo transactions i.e.
reverse the operations of a transaction. This
involves examining a transaction for the log
entry write_item(T, x, old_value, new_value) and
setting the value of item x in the database to old-
value.There are two major techniques for
recovery from non-catastrophic transaction
failures: deferred updates and immediate
updates.

Deferred update – This technique does not physically
update the database on disk until a transaction has
reached its commit point. Before reaching commit, all
transaction updates are recorded in the local
transaction workspace. If a transaction fails before
reaching its commit point, it will not have changed the
database in any way so UNDO is not needed. It may be
necessary to REDO the effect of the operations that are
recorded in the local transaction workspace, because
their effect may not yet have been written in the
database. Hence, a deferred update is also known as
the No-undo/redo algorithm

Immediate update – In the immediate update,
the database may be updated by some operations
of a transaction before the transaction reaches its
commit point. However, these operations are
recorded in a log on disk before they are applied
to the database, making recovery still possible. If a
transaction fails to reach its commit point, the
effect of its operation must be undone i.e. the
transaction must be rolled back hence we require
both undo and redo. This technique is known as
undo/redo algorithm.

Caching/Buffering – In this one or more disk
pages that include data items to be updated are
cached into main memory buffers and then
updated in memory before being written back to
disk. A collection of in-memory buffers called the
DBMS cache is kept under control of DBMS for
holding these buffers. A directory is used to keep
track of which database items are in the buffer. A
dirty bit is associated with each buffer, which is 0
if the buffer is not modified else 1 if modified.

Shadow paging – It provides atomicity and
durability. A directory with n entries is
constructed, where the ith entry points to the ith
database page on the link. When a transaction
began executing the current directory is copied
into a shadow directory. When a page is to be
modified, a shadow page is allocated in which
changes are made and when it is ready to
become durable, all pages that refer to original
are updated to refer new replacement page.

	Slide 1
	Transactions
	What is a Transaction?
	What is a Transaction?
	Evaluating Transaction Results
	Transaction Properties(ACID properties)
	Slide 7
	Durability
	Transaction State
	Transaction State
	Slide 11
	Transaction Management with SQL
	Transaction Management with SQL
	The Transaction Log
	The Transaction Log
	A Transaction Log
	Transactions and schedules
	Slide 18
	Slide 19
	Slide 20
	Concurrent execution of Transactions
	Concurrent execution of Transactions
	Slide 23
	TYPES OF SCHEDULE
	1. Serial Schedule
	Slide 26
	Slide 27
	2. Non-serial Schedule/ Concurrent Execution
	Non-serial Schedule
	Problems with Concurrent Execution
	Problem 1: Lost Update Problems (W - W Conflict)
	Slide 32
	Slide 33
	Dirty Read Problems (W-R Conflict) / Uncommitted Data
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Serializability
	Slide 40
	Types of Serializability
	Conflict Serializability
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Precedence Graph
	Slide 48
	ALGORITHM
	ALGORITHM
	PROBLEM 1
	Slide 52
	Example: conflict serializable and conflict equivalent
	CONFLICT EQUIVALENT
	Example :CONFLICT EQUIVALENT
	Example :conflict equivalent(conti..)
	Example :conflict equivalent(conti..)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	View Serializability
	View Equivalent Schedules-
	1. Initial Read
	2. Updated Read
	3. Final Write
	Slide 67
	Slide 68
	View serializability
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	EXAMPLE :
	EXAMPLE:SOLUTION
	EXAMPLE:- solution
	EXAMPLE:-SOLUTION (conti..)
	Irrecoverable Schedules-
	Example:Irrecoverable schedule
	Example: Irrecoverable schedule
	Recoverable Schedules-
	EXAMPLE: Recoverable Schedules-
	Slide 84
	Slide 85
	Recoverable schedule
	CASCADING SCHEDULE
	Slide 88
	Slide 89
	Cascadeless schedule
	CONCURRENCY CONTROL IN DATABASES
	CONCURRENCY CONTROL
	Concurrency problems in DBMS Transactions
	Lock based protocol
	Locks
	Locks
	Lock compatibilty
	Slide 98
	Slide 99
	Granting of locks
	Slide 101
	Slide 102
	Slide 103
	Two - Phase Locking (2PL)
	phases
	Slide 106
	Example
	Slide 108
	Slide 109
	Slide 110
	Deadlock in 2PL
	Slide 112
	Concurrency Control Based on Timestamp Ordering
	TIMESTAMPS
	Slide 115
	Slide 116
	The Timestamp-Ordering Protocol
	Timestamp-Ordering Protocol(conti..)
	Timestamp-Ordering Protocol(conti..)
	Slide 120
	Deadlock
	Deadlock Avoidance
	Deadlock Detection
	Wait for Graph
	Wait for Graph
	Deadlock Prevention
	Wait-Die scheme
	Wait-Die scheme
	Wound wait scheme
	Optimistic Methods for Concurrency Control
	Slide 131
	Slide 132
	Database Recovery Management-Transaction Recovery
	Slide 134
	Slide 135
	Slide 136
	recovery process
	Slide 138
	Slide 139
	Slide 140
	Slide 141

