Chapter 3
Transport Layer

A note on the use of these ppt slides:

We’'re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously

represent a /ot of work on our part. In return for use, we only ask the following:

UIf you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)

4If you post any slides in substantially unaltered form on a www site, that you
note that they are adapted from (or perhaps identical to) our slides, and note
our copyright of this material.

Thanks and enjoy! JFK/IKWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

CO M PUTE R FIFTH EDITION
NETWORKING

A Top-Down Approach

/////

KUROSE « ROSS

Computer Networking: A
Top Down Approach

H5th edition.

Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Transport Layer 1

Transport services and protocols

O provide logical communication
between app processes running
on different hosts

transport protocols run in end

systems
O send side: breaks app

messages into segments,

passes to network layer

O) ; transport
rcv side: reassembles

segments into messages, physical

passes to app layer
O mor' B Ran one tran port

protocol available to apps

O Internet: TCP and UDP
Transport Layer 2

Transport vs. network layer

3 network layer: logical
communication between
hosts

3 transport layer: logical
communication between
processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to 12

kids
)

— Pprocesses = kids

app messages = letters in
5 envelopes

hosts = houses

transport protocol = Ann
and Bill

network-layer protocol =

postal service
Transport Layer

Internet transport-layer protocols

7 reliable, in-order delivery s

(TCP) — K R

dara lin k
O congestion control

O flow control

 connection setup
3 unreliable, unordered

delivery: UDP

O no-frills extension of i AR o 17
w ATa = N) —retwork—
best-effort"” IP I 5. physicat S—gara Tk

€D E" " l/physica
p= I

T services not available:
O delay guarantees

O bandwidth guarantees
Transport Layer 4

Reliable data transfer: getting started

we'll:
T incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

T consider only unidirectional data transfer

O byt control info will flow on both directions!
3 use finite state machines (FSM) to specify

sender, receiver event causing state transition
actions taken on state transition

/ \
event @

state: when in this
"state" next state

uniquely determined actions

by next event (A ’

Transport Layer ~ ©

Rdt1.0: reliable transfer over a reliable channel

T underlying channel perfectly reliable
O no bit errors

O no loss of packets

O separate FSMs for sender, receiver:
O sender sends data into underlying channel

O receiver read data from underlying channel

" Avait o\ rdt_send(data) “/Wait fo
call from call from
above below

rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer

Rdt2.0: channel with bit errors

3 underlying channel may flip bits in packet

O checksum to detect bit errors
T the question: how to recover from errors:
O acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

” negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
O

sender retransmits pkt on receipt of NAK
O new mechanisms in rdt2.0 (beyond rdtl.0):

O error detection

O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer

7

rd12.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iSNAK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

FAN

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer

8

rdt2.0: operation withno errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

rdt_rcv(rcvpkt) &&

isSNAK(rcvpkt)

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
< 1‘\

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer

9

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
< JAN

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer

10

rdt2.0 has a fatal flaw!

What happens if ACK/
NAK corrupted?

T sender doesn't know what
happened at receiver!

7 can't just retransmit:
possible duplicate

Handling duplicates:
3 sender retransmits current
pkt if ACK/NAK garbled

m)
sender adds sequence number

to each pkt
receiver discards (doesn't
deliver up) duplicate pkt

stop and wait
Sender sends one packeft,

then waits for receiver

response

Transport Layer

11

rd12.1: sender, handles garbled ACK/NAKs

rdt_send(data)

SNAPKT = make_pK{(U, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt) ||
sNAK(rcvpkt))

udt_send(sndpkt)

~~

ACK or NAK

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A
A
Wait for
111 f
rdt_rcv(rcvpkt) && Q/ Caabovrgm
(corrupt(rcvpkt) ||
isNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer

12

rd12.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) && R
not corrupt(rcvpkt) && G
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

rdt_rcv(rovpkt) && notcorrupt(revpkty udt.send(sndpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 13

rdt2.1: discussion

Sender.

O seq # added to pkt
7 two seq. #'s (0,1) will
suffice. Why?

3 must check if received
ACK/NAK corrupted

T twice as many states
O state must "remember”
whether “current” pkt
has O or 1 seq. #

Receiver:

3 must check if received

packet is duplicate
O

state indicates whether

O or 1is expected pkt

seq #

T note: receiver can not
know if its last ACK/
NAK received OK at

sender

Transport Layer

14

rdt2.2: a NAK-free protocol

T same functionality as rdt2.1, using ACKs only
7 instead of NAK, receiver sends ACK for last pkt
received OK

O receiver must explicitly include seq # of pkt being ACKed
3 duplicate ACK at sender results in same action as

NAK: retransmit current pkt

Transport Layer 15

rdt2.2: sender, receiver fragments

rdt_send(data)

udt_send(snd pEt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

udt_send(sndpkt)

Wait for
ACK
0

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && && isACK(rcvpkt,0)

(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

“—_fragment

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) T

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Transport Layer

36

rdt3.0: channels with errors and loss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of time
also lose packets (data for ACK

T retransmits if no ACK received in
or ACKs) .
— this time
© checksum, seq. #, ACKSs, if pkt (or ACK) just delayed (not
retransmissions will be lost):
of help, but not enough O retransmission will be

duplicate, but use of seq. #'s
2 already handles this

receiver must specify seq # of
pkt being ACKed

requires countdown Hmgoort Layer 17

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

udt_se_nd(sndpkt) isACK(rC\(pkt, 1))
rdt_rcv(rcvpkt) \ start_timer 7x
A Y Wait f B ait for .
alt for timeout
call Ofrom ACKO
udt_send(sndpkt)
above start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer
stop_timer
ti t Wait for
e > call 1 from
udt_send(sndpkt) (-\ above
start_timer b —~ - rdt_rC\igrcvpkt)
rdt_send(data)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) || sndpkt = make_pkt(1, data, checksum)

isACK(rcvpkt,0)) udt_send(sndpkt)

X start_timer

Transport Layer

18

rd+3.0 in action

sender receiver

pkt
send pki0 \Ob rCV pKi
send ACKO
1

ov ACKO /

ACK
send pkf1 \M\A
rcv pkil
ACK send ACK
rcvACK
CK

send pktO ki g
A rcv pkio
send ACKO

(a) operation with no loss

sender receiver
pkt
sendpl0. =50 ovpkio
ACK send ACKO

rcv ACKO

send pki1 7 \%
(loss)

fimeout okt

resend pki1~ \
rcv pkil
ACK send ACK1
rcvACK] o
send pkiO

rcv pkio
}@/ send ACKO

(b) lost packet

Transport Layer 19

rd+3.0 in action

sender receiver
okt
NP0 0 rovpie
ACK send ACKO
rcv ACKO
send pkt1 T ka]
\ rcv pkil
ACK send ACKI1
(loss) Xl)/
fimeout = Pkt 4
resend Pkt \rcv okt 1 .
ACK (detect duplicate)
send ACK1
rcvACK o
send pkiO
rcv pkto
ACK send ACKO
(c) lost ACK

sender receiver
kt
sendpdd. L0 o, pug
ACK send ACKO

rcv ACKO _
send pkiT
rcv pktl
send ACK1
timeout
resend pkil =
rcv pktl
rcvACK (detect duplicate)
send pkiO send ACK1
rcv pkio
send ACKO

ACK g

(d) premature timeout

Transport Layer 20

Performance of rdt3.0

7 rdt3.0 works, but performance stinks
T ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

d = L _ 8000bits _ gpicroseconds
R 10°bps
O U g Utilization - fraction of time sender busy sending
.008
U _— L/R = = 000027

sender RTT+L/R 30.008
O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

O network protocol limits use of physical resources!

Transport Layer

21

rdt3.0: stop-and-wait

operation

sender

first packet bit transmitted, t = 0

last packet bit transmitted, t =L /R_

RTI

ACK arrives, send next

packet,t = RTT + L/R™]

U _ L/R

receiver

first packet bit arrives
|_last packet bit arrives, send ACK

sender

RTT+L/R

30.008

= 0.00027

Transport Layer 22

Disadvantage of Stop-and-Wait
In stop-and-wait, at any point in time, there is only one

frame that is sent and waiting to be acknowledged.

This is not a good use of transmission medium.

To improve efficiency, multiple frames should be in
transition while waiting for ACK.

Two protocol use the above concept,
| Go-Back-N ARQ
| Selective Repeat ARQ

Transport Layer 23

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts

O range of sequence numbers must be increased

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

T Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 24

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0
last bit transmitted, t =L /R _|

first packet bit arrives

ast packet bit arrives, send ACK

last bit of 2nd packet arrives, send ACK
ast bit of 3rd packet arrives, sendACK

RTI

ACK arrives, send next
packet, t =RTT + L/R™

Increase utilization
/ by a factor of 3!

U _ 3*L/Rr A
sender 30008 0.0008

RTT+L/R

Transport Layer 29

Sliding Window Protocol
Sliding window refers to an imaginary boxes that hold the

packets on both sender and receiver side.

Fharodiiesple YRS SimiT+el e OWnPeL £ RAg el

acknowledgment.
Packets may be acknowledged by receiver at any point

even when window is not full on receiver side.
Packets may be transmitted by source even when window
is not yet full on sender side

Transport Layer 26

Pipelining
operate in a stop-and-wait manner, the sender is allowed to send multiple
packets without waiting for acknowledgments
Since the many in-transit sender-to-receiver packets can be visualized as
filling a pipeline. this technique is known as pipelining. Pipelining has several
consequences for reliable data transfer protocols:

*The range of sequence numbers must be increased., since each in-transit
packet (not counting retransmissions) must have a unique sequence number
and there may be multiple, in-transit, unacknowledged packets.

The sender and receiver sides of the protocols may have to buffer more
than one packet. Minimally. the sender will have to buffer packets that have
been transmitted, but not yet acknowledged. Buffering of correctly received
packets may also be needed at the receiver, :

The range of sequence numbers needed and the buffering requirements will
depend on the manner in which a data transfer protocol responds to lost,
corrupted, and overly delayed packets. Two basic approaches toward pipelined
error recovery can be identified: Go-Back-N and selective repeat. Both these

protocols are based on the principle of sliding window.
27

Pipelining Protocols

Go-back-N: overview Selective Repeat: overview
3 sender: up fo N 3 sender: up to N unACKed
unACKed pkts in pipeline packets in pipeline
3 receiver: only sends 3 receiver: ACKs individual
C@lt’ggég;l,rvgdﬁgl((fs if there's pkts
a gap J sender: maintains timer
3 sender: has timer for for each unACKed pkt
oldest unACKed pkt O if timer expires: retransmit
O if timer expires: only unACKed packet
retransmit all unACKed
packets

Transport Layer 28

Go-Back-N ARQ

o Itis a special case of the general sliding window
protocol with the transmit window size of N and
receive window size of 1.

» We can send up to W packets before worrying about
ACKs.

» We keep a copy of these packets until the ACKs arrive.

o This procedure requires additional features to be
added to Stop-and-Wait ARQ.

Transport Layer 29

Go-Back-N

Sender:
O k-bit seq # in pkt header
7 “window" of up to N, consecutive unACKed pkts allowed

send_base nhexftsegnum dlready Usable. not
lv ‘L ack’ed yet sent
LD THTIT000000 | et [v
+ __ window size —%
N

T ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
Omay receive duplicate ACKs (see receiver)

7 timer for each in-flight pkt

|

timeout(n): retransmit pkt n and all higher seq # pkts in window
Transport Layer 30

GBN in

action

sender

send pktO
send pki |

> send pkt2

send pkt3
(wait)

rcv ACKO
send pkt4

rcv ACKI

—pkt2 fimeout
send pki2
send pkt3
send pkt4
send pktd

receiver

\-‘»
\(kczss)
X

send pkt5 \

—
~

rcv pkto
send ACKO

rev Pkt
send ACK

rcv pkt3, discard
send ACK

rcv pktd, discard
send ACK]

rcv pktd, discard
seng ACK

rcv pki2, deliver

send ACK2 |
rcv pkt3, deliver

send ACK3

Transport Layer

31

Selective Repeat

T receiver individually acknowledges all correctly

received pkts
O buffers pkts, as needed, for eventual in-order delivery to upper

layer
T sender only resends pkts for which ACK not
received

O sender timer for each unACKed pkt
7 sender window

O N consecutive seq #'s

O again limits seq #s of sent, unACKed pkts

Transport Layer 32

Selective Repeat Protocol

Go Back N protocol simplifies the process at the receiver.The receiver keeps
track of only one variable , there is no need to buffer out of order packets;
they are simply discarded.

This protocol is inefficient if underlying network protocol loses a lot of
packets. Each time a single packet is lost or corrupted , the sender resends
all outstanding packets, even though some packets may have been received
safe and sound out of order.

If the network layer is losing too many packets because of congestion,
resending of packets again increases congestion. This results in the total

collapse of the network.

Selective Repeat (SR) protocol resends only selective packets, that are
actually lost.

Transport Layer

33

Selective repeat: sender, receiver windows

(buffered) but ALy
dlready ack’ed (within window)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂllllllllllllﬂﬂﬂ |ogectedaer o

t _ window size—4

t N

rcv_base

send_base nexfsegnum dlready Usable. not
i' 'L ack’ed yet sent
sent, not
ORI e
t — window size —%
i N
(a) sender view of sequence numbers
out of order acceptable

(b) receiver view of sequence numbers

Transport Layer 34

Selective repeat

—sender

data from above :
T if next available seq # in

window, send pkt

timeout(n):
T resend pkt n, restart timer

I mark pkt n as received

T if n smallest unACKed pkft,
advance window base to
hext unACKed seq #

ACK(n) in [sendbase,sendbase+N]:

— receiver
ka nin [rcvbase, rcvbase+N-1]

T send ACK(n)

= out-of-order: buffer

.
in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

ka N iN [revbase-N,rcvbase-1]
T ACK(n)

otherwise:.

= gnore Transport Layer

35

Selective repeat in action

pktl =ent
Q1 cd|&a6 ¥ as ‘q__hﬁﬁﬁ__hﬁﬁﬁ__“““"pktU rcvd, delivered, ACKD sent
pktl sent 0fL 2 3 4|56 7 8 9

0123456 7883

pktl rcvd, delivered, ACKl sent
pkt2 sent 0 1|2 3 4 5(e 7 89
— |01 23/456 789 #X

pkt3 sent, window full
0123456 7889

pkt3 rcvd. buffered. ACK3 sent
012 3 456 7 889

ACKO rcvd, pktd sent
011 2 3 4|56 7 89

> pktd rcvd, buffered, ACK4 sent
ACKLl rcvd, pktS =ent 0 1|2 3 4 5|6 7 89

01(2 3 4 5|6 7 89

pktS rcvd, buffered. ACKS sent
0 1|2 3 4 5(e 7 89

—— pkt2 TIMEOUT, pkt2 resent
0112 3 4 5|6 789

pkt2 rcvd, pkt2,pkt3,pktd, pktS
delivered, ACKZ s=ent

ACK3 rcvd, nothing sent 012345k 783
0 1|2 3 4 5|6 7 889

rt Layer

receiver window
(after receipt)

sender window

Selective repeat: (after receipt)

ktO
0123012E

dilemma 012301

Ofjl 2 3J0 1 2

0112 30f1 2

012|301°2 012301l
ACK2
Example:
timeout
3 seq #s:0,1,2,3 retransmit pktﬁkto _
012301 —> reCﬁlve packe’é 0
o . -t
T window size=3 With seq humber
: (@
) receiver sees no
. . sender window receiver window
difference in two (after receipt) (after receipt)

: ktO
scenarios! 01230149 oli 2 3lo1 2
-
incorrectly passes e M 01]2 3 of1 2
- . 012]30172 0123012
duplicate data as new in (a) ACK2
01 2 3j0 1
Q: what relationship between o1[z3 0o

receive packet

seq # size and window with seq number O

size?

()

Transport Layer 37

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? 7 SampleRTT: measured time from

7 longer thanRTT segment transmission until ACK

. receipt

O but RTT varies P

3 too short: premature O ignore retransmissions
timeout O SampleRTT will vary, want
4n unHecessar'y P 4

. estimated RTT “"smoother"”
retransmissions

too long: slow reaction
to segment loss

Transport Layer 38

TCP reliable data transfer

3 TCP creates rdt 7 retransmissions are
service on top of IP's triggered by:
unreliable service 5 timeout events

7 pipelined segments © duplicate ACKs

3 initially consider
simplified TCP sender:

3 cumulative ACKs
T TCP uses single

retransmission timer © ignore duplicate ACKs
O ignhore flow control,

congestion control

Transport Layer

39

TCP sender events:

data rcvd from app: fimeout:
7 create segment with seq # = refransmit segment that
7 seq # is byte-stream caused timeout

number of first data byte [resfart timer

In segment ACK rcvd:

3 start timer if not already o if acknowledges previously

running (think of timer as unACKed segments
for oldest unACKed O update what is known to be
segment) 2 ACKed

7 expiration interval: start timer if there are

TimeOutInterval outstanding segments

Transport Layer

40

TCP: retransmission scenarios

Host L\;;

—

[

5

S

£

~

(@)Y

%_

(Vp]

Sendbase !_ |

=100 3

SendBase é

=120 &

(0)

t;)'l)_

SendB
e_nlogse SendBase | |“
) =120 ' premature timeout
time time

lost ACK scenario 61

Transport Layer

TCP retransmission scenarios (more)

»
(0)]
D
QO
(IOI
N
(@'}
(o
=
> &3
3
Q

»
+ Sen 0\44\00
o 9=100
& 20 bytes gy
£ a
= Xa N
IOSS/
- 0
SendBase " AC =\2

=120

time
Cumulative ACK scenario

Transport Layer 42

Fast Retransmit

3 time-out period often 7 If sender receives 3
relatively long: ACKs for same dataq, it
? long delay before assumes that segment
after ACKed data was

resending lost packet

O detect lost segments via

. lost:
duplicate ACKs. ost
O sender often sends many O fast retransmit: resend
segments back-to-back segment before timer
O . . .
if segment is lost, there expires

will likely be many
duplicate ACKs for that
segment

Transport Layer

triple

duplicate

ACKs

timeout

time

Transport Layer 44

Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing ” reliable data transfer

7 3.3 Connectionless 2 flow control
transport: UDP ?

3 3.4 Principles of reliable connection management
data transfer 3 3.6 Principles of

congestion control

3 3.7 TCP congestion
control

Transport Layer

TCP Flow Control

~flow control

7 receive side of TCP sender won't overflow
receiver’'s buffer by

connection has a receive transmitting too much,

bUffer': W
Ip (currently) .,) speed-matching
unused buffer . .
datagrams space process service. ma’rchmg send

rate to receiving

application’s drain rate
T app process may be

slow at reading from
buffer

Transport Layer 46

TCP Flow control: how it works

o T receiver: advertises

process unused buffer space by

(currently)

P
L unused buffer
datagrams space

including rwna value in

~— rwnd —
RcvBuffer

segment header

(suppose TCP receiver 9 sender: limits # of

discards out-of-order unACKed bytes to rund
segments) O guarantees receiver's
3 unused buffer space: buffer doesn't overflow
= rwnd
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 47

Chapter 3 outline

3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing ” reliable data transfer

7 3.3 Connectionless ” flow control
transport: UDP ?

3 3.4 Principles of reliable connection management
data transfer 3 3.6 Principles of

congestion control

3 3.7 TCP congestion
control

Transport Layer

TCP Connection Management

Recall: TcP sender, receiver Thr-ee way handshake:
establish “connection” before '

exchanging data segments

Step 1: client host sends TCP SYN

T initialize TCP variables: segment to server

O seq. #s
O buffers, flow control info

O specifies initial seq #
O no data
(e.g. ReviWindow)

9 client: connection initiator Step 2: server host receives SYN,

Socket clientSocket = new r'eplies with SYNACK segmenT
Socket ("hostname", "port
number") ; O server allocates buffers
7 server: contacted by client O specifies server initial seq. #
Socket connectionSocket = Step 3: client receives SYNACK,

welcomeSocket.accept() ;

replies with ACK segment, which
may contain data

Transport Layer 49

TCP Connection Management (cont.)

:(r'i)

Closing a connection: client server 25

client closes socket:
clientSocket.close() ;

Step 1: client end system sends TCP

FIN control segment to server close

Step 2: server receives FIN,

replies with ACK. Closes ACK

connection, sends FIN.

timed wait |
y

closed

Transport Layer 90

TCP Connection Management (cont.)

D

= —
%E

Step 3: client receives FIN, replies

client server

with ACK. closin
ing F
O Enters “timed wait" - will IN
respond with ACK to received >
FINs ACK .
closing
. : N
Step 4: server, receives ACK.
Connection closed. T |4
= ACK
Note: with small modification, can —i A closed
close
handle simultaneous FINs. g
=
closed

Transport Layer 91

TCP Connection Management (cont)

wait 30 seconds

CLOSED

TIME_WAIT

b

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nothing

TCP client
lifecycle

client application

initiates a TCP connection

send SYN

SYN_SENT

h 4

receive SYN & ACK
send ACK

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN

receive ACK
send nothing

CLOSED

LAST_ACK

[

X

send FIN

CLOSE_WAIT

receive FIN
send ACK

TCP

server

lifecycle

server application

creates a listen socket

LISTEN

3

receive SYN
send SYN & ACK

4

SYN_RCVD

ESTABLISHED

receive ACK
send nothing

Transport Layer

52

