
Transport Layer

Chapter 3
Transport Layer

Computer Networking: A
Top Down Approach

5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the following:
❑If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)
❑If you post any slides in substantially unaltered form on a www site, that you
note that they are adapted from (or perhaps identical to) our slides, and note
our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

1

Transport Layer

Transport services and protocols

❒

❒ provide logical communication
between app processes running
on different hosts

transport protocols run in end
systems

❍

❍ send side: breaks app
messages into segments,
passes to network layer

rcv side: reassembles
segments into messages,
passes to app layer

❒ more than one transport
protocol available to apps

❍ Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network

data link
physical

logical end-end transport

2

Transport Layer

Transport vs. network layer

❒ network layer: logical
communication between
hosts

❒ transport layer: logical
communication between
processes
❍ relies on, enhances,

network layer services

❒

❒

❒

❒

❒

3

Household analogy:
12 kids sending letters to 12

kids

processes = kids
app messages = letters in
envelopes

hosts = houses
transport protocol = Ann
and Bill

network-layer protocol =
postal service

Transport Layer

Internet transport-layer protocols

❒ reliable, in-order delivery
(TCP)

❍

❍

❍ congestion control

flow control

connection setup
❒ unreliable, unordered

delivery: UDP
❍ no-frills extension of

“best-effort” IP

❒ services not available:
❍ delay guarantees
❍ bandwidth guarantees

application
transport
network
data link
physical network

data link
physical

network
data link
physical

network
data link
physical

nedata link

physical

network
data link
physical twork

network
data link
physical

application
transport
network
data link
physical

logical end-end transport

4

Transport Layer

Reliable data transfer: getting started

We’ll:
❒ incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)

❒ consider only unidirectional data transfer
❍ but control info will flow on both directions!

sender, receiver
❒ use finite state machines (FSM) to specify

 event causing state transition

state
1

state
2

actions taken on state transition
state: when in this
“state” next state

uniquely determined

by next event

 event
actions

5

Transport Layer

Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable
❍ no bit errors
❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel
❍ receiver read data from underlying channel
Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

6

sender receiver

Transport Layer 7

Rdt2.0: channel with bit errors

❒ underlying channel may flip bits in packet
❍ checksum to detect bit errors

❒ the question: how to recover from errors:

❍

❍

❍ acknowledgements (ACKs): receiver explicitly tells sender that
pkt received OK

negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

sender retransmits pkt on receipt of NAK
❒ new mechanisms in rdt2.0 (beyond rdt1.0):

❍ error detection
❍ receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer

rdt2.0: FSM specification

Wait for call
from above

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for call
from below

sender

receiver
rdt_send(data)

8

Λ

Transport Layer

rdt2.0: operation with no errors

Wait for call
from above

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for call
from below

rdt_send(data)

Λ

9

Transport Layer

rdt2.0: error scenario

Wait for call
from above

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for call
from below

rdt_send(data)
snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

Λ

10

Transport Layer

rdt2.0 has a fatal flaw!

What happens if ACK/
NAK corrupted?

❒

❒ sender doesn’t know what
happened at receiver!

can’t just retransmit:
possible duplicate

❒

❒

Handling duplicates:
❒ sender retransmits current

pkt if ACK/NAK garbled
sender adds sequence number

to each pkt
receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
Sender sends one packet,
then waits for receiver
response

11

Transport Layer

rdt2.1: sender, handles garbled ACK/NAKs

Wait for call
0 from
above

udt_send(sndpkt)

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

Wait for
ACK or NAK

0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

12

Λ
Λ

Transport Layer

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

13

Transport Layer 14

rdt2.1: discussion

Sender:
❒ seq # added to pkt
❒ two seq. #’s (0,1) will

suffice. Why?
❒ must check if received

ACK/NAK corrupted

❒ twice as many states
❍ state must “remember”

whether “current” pkt
has 0 or 1 seq. #

❍

Receiver:
❒ must check if received

packet is duplicate
state indicates whether
0 or 1 is expected pkt
seq #

❒ note: receiver can not
know if its last ACK/
NAK received OK at
sender

Transport Layer 15

rdt2.2: a NAK-free protocol

❒ same functionality as rdt2.1, using ACKs only
❒ instead of NAK, receiver sends ACK for last pkt

received OK
❍ receiver must explicitly include seq # of pkt being ACKed

❒ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 36

rdt2.2: sender, receiver fragments

Wait for call
0 from
above

udt_send(sndpkt)

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

Transport Layer 17

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
❍ checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

❒

❍

❒

Approach: sender waits
“reasonable” amount of time
for ACK

❒ retransmits if no ACK received in
this time

if pkt (or ACK) just delayed (not
lost):

❍ retransmission will be
duplicate, but use of seq. #’s
already handles this

receiver must specify seq # of
pkt being ACKed

requires countdown timer

Transport Layer

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait for
ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

timeout
udt_send(sndpkt)
start_timer

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait for
ACK1

Λ
rdt_rcv(rcvpkt)

Λ

18

Λ

Λ

Transport Layer

rdt3.0 in action

19

Transport Layer

rdt3.0 in action

20

Transport Layer

Performance of rdt3.0

❒ rdt3.0 works, but performance stinks
❒ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

❍ U sender: utilization – fraction of time sender busy sending

U
sender= L / R =

.008

30.008
= 0.00027

RTT + L / R
❍ 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

network protocol limits use of physical resources!❍

d = L = 8000bits = 8microseconds
R 109 bps

21

trans

Transport Layer

rdt3.0: stop-and-wait operation
sender receiver

RTT

first packet bit transmitted, t = 0
last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

22

U
sender = L / R =

RTT + L / R

.008

30.008
= 0.00027

Transport Layer 23

Disadvantage of Stop-and-Wait
In stop-and-wait, at any point in time, there is only one

frame that is sent and waiting to be acknowledged.

This is not a good use of transmission medium.

To improve efficiency, multiple frames should be in
transition while waiting for ACK.

Two protocol use the above concept,
¡ Go-Back-N ARQ
¡ Selective Repeat ARQ

Transport Layer

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
❍ range of sequence numbers must be increased
❍ buffering at sender and/or receiver

❒ Two generic forms of pipelined protocols: go-Back-N,
selective repeat

24

Transport Layer

Pipelining: increased utilization

RTT

sender receiver
first packet bit transmitted, t = 0

last bit transmitted, t = L / R

ACK arrives, send next
packet, t = RTT + L / R

first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK

 last bit of 3rd packet arrives, send ACK

U
sender = 3 * L / R =

RTT + L / R

.024

30.008
=

Increase utilization
by a factor of 3!

0.0008

25

Transport Layer 26

Sliding Window Protocol
Sliding window refers to an imaginary boxes that hold the
packets on both sender and receiver side.
It provides the upper limit on the number of packets

•

•
that can be transmitted before requiring an
acknowledgment.

• Packets may be acknowledged by receiver at any point
even when window is not full on receiver side.

Packets may be transmitted by source even when window
is not yet full on sender side

•

Transport Layer

Pipelining

27

Transport Layer 28

Pipelining Protocols

Go-back-N: overview
❒ sender: up to N

unACKed pkts in pipeline
❒ receiver: only sends

cumulative ACKs❍ doesn’t ACK pkt if there’s
a gap

❒ sender: has timer for
oldest unACKed pkt
❍ if timer expires:

retransmit all unACKed
packets

Selective Repeat: overview
❒ sender: up to N unACKed

packets in pipeline
❒ receiver: ACKs individual

pkts
❒ sender: maintains timer

for each unACKed pkt
❍ if timer expires: retransmit

only unACKed packet

Transport Layer 29

Transport Layer

Go-Back-N
Sender:

❒

❒ k-bit seq # in pkt header

“window” of up to N, consecutive unACKed pkts allowed

❒

30

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
❍may receive duplicate ACKs (see receiver)

timer for each in-flight pkt

timeout(n): retransmit pkt n and all higher seq # pkts in window

❒

❒

Transport Layer

GBN in
action

31

Transport Layer 32

Selective Repeat

❒ receiver individually acknowledges all correctly
received pkts
❍ buffers pkts, as needed, for eventual in-order delivery to upper

layer

❒ sender only resends pkts for which ACK not
received
❍ sender timer for each unACKed pkt

❒ sender window
❍ N consecutive seq #’s
❍ again limits seq #s of sent, unACKed pkts

Transport Layer 33

Transport Layer

Selective repeat: sender, receiver windows

34

Transport Layer

Selective repeat

❒ if next available seq # in
window, send pkt

timeout(n):
❒ resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received
❒ if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
data from above :

❒

❒

receiver
pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)
out-of-order: buffer

in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ ACK(n)

otherwise:
❒ ignore 35

Transport Layer

Selective repeat in action

36

Transport Layer

Selective repeat:
 dilemma

Example:
❒ seq #’s: 0, 1, 2, 3
❒ window size=3

❒ receiver sees no
difference in two
scenarios!

incorrectly passes
duplicate data as new in (a)

❒

Q: what relationship between
seq # size and window
size?

37

Transport Layer 38

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

❒ longer than RTT
❍ but RTT varies
❒ too short: premature

timeout
❍ unnecessary

retransmissions

too long: slow reaction
to segment loss

❒

Q: how to estimate RTT?
❒ SampleRTT: measured time from

segment transmission until ACK
receipt

❍ ignore retransmissions
❒ SampleRTT will vary, want

estimated RTT “smoother”

Transport Layer 39

TCP reliable data transfer

❒ TCP creates rdt
service on top of IP’s
unreliable service

❒ pipelined segments
❒ cumulative ACKs
❒ TCP uses single

retransmission timer

❒ retransmissions are
triggered by:
❍ timeout events
❍ duplicate ACKs

❒ initially consider
simplified TCP sender:
❍ ignore duplicate ACKs
❍ ignore flow control,

congestion control

Transport Layer 40

TCP sender events:
data rcvd from app:
❒ create segment with seq #
❒ seq # is byte-stream

number of first data byte
in segment

❒ start timer if not already
running (think of timer as
for oldest unACKed
segment)

❒ expiration interval:
TimeOutInterval

❍

timeout:
❒ retransmit segment that

caused timeout
❒restart timer

ACK rcvd:

❒ if acknowledges previously
unACKed segments
❍ update what is known to be

ACKed

start timer if there are
outstanding segments

Transport Layer 61

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

X
loss

ti
m

eo
ut

lost ACK scenario

Host B

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

ti
m

eo
ut

Host B

Seq=100, 20 bytes data

ACK=120

time
Cumulative ACK scenario

42

X
loss

SendBase
= 120

Transport Layer 43

Fast Retransmit

❒ time-out period often
relatively long:
❍ long delay before

resending lost packet

❒ detect lost segments via
duplicate ACKs.

❍

❍ sender often sends many
segments back-to-back

if segment is lost, there
will likely be many
duplicate ACKs for that
segment

❒ If sender receives 3
ACKs for same data, it
assumes that segment
after ACKed data was
lost:
❍ fast retransmit: resend

segment before timer
expires

Transport Layer

Host A

ti
m

eo
ut

Host B

time

X

resend seq X2

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1triple

duplicate

ACKs

44

Transport Layer 45

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of reliable
data transfer

❍

❍

❍

❒ 3.5 Connection-oriented
transport: TCP
❍ segment structure

reliable data transfer

flow control

connection management
❒ 3.6 Principles of

congestion control
❒ 3.7 TCP congestion

control

Transport Layer

TCP Flow Control

❒ receive side of TCP
connection has a receive
buffer:

❒ speed-matching
service: matching send
rate to receiving
application’s drain rate

❒ app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

 IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application

46

process

Transport Layer

TCP Flow control: how it works

(suppose TCP receiver
discards out-of-order
segments)

❒ unused buffer space:
= rwnd
= RcvBuffer-[LastByteRcvd -

LastByteRead]

❒ receiver: advertises
unused buffer space by
including rwnd value in
segment header

❒ sender: limits # of
unACKed bytes to rwnd
❍ guarantees receiver’s

buffer doesn’t overflow

 IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

rwnd
RcvBuffer

47

Transport Layer 48

Chapter 3 outline

❒ 3.1 Transport-layer
services

❒ 3.2 Multiplexing and
demultiplexing

❒ 3.3 Connectionless
transport: UDP

❒ 3.4 Principles of reliable
data transfer

❍

❍

❍

❒ 3.5 Connection-oriented
transport: TCP
❍ segment structure

reliable data transfer

flow control

connection management
❒ 3.6 Principles of

congestion control
❒ 3.7 TCP congestion

control

Transport Layer 49

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

❒ initialize TCP variables:

❍

❍ seq. #s
buffers, flow control info
(e.g. RcvWindow)

❒ client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

❒

Three way handshake:

Step 1: client host sends TCP SYN
segment to server

❍ specifies initial seq #
❍ no data

Step 2: server host receives SYN,
replies with SYNACK segment

❍ server allocates buffers
❍ specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which
may contain data

Transport Layer

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends TCP

FIN control segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

50

close

closed

ti
m

ed
 w

ai
t

Transport Layer

TCP Connection Management (cont.)

Step 3: client receives FIN, replies
with ACK.
❍ Enters “timed wait” - will

respond with ACK to received
FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification, can
handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

51

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer

TCP Connection Management (cont)

TCP client
lifecycle

52

TCP server
lifecycle

