Syllabus

Concepts of Agile Development methodology: Scrum
Framework.

Software testing principles, Program inspections, Program
walkthroughs, Program reviews; Blackbox testing:
Equivalence class testing, Boundary value testing, Decision
table testing, Pairwise testing, State transition testing, Use-
case testing; White box testing: control flow testing, Data flow
testing.

Testing automation: Defect life cycle; Regression testing,
Testing automation; Testing nonfunctional requirements.

Fundamentals of Agile Development

Agile software engineering combines a philosophy and a set
of development guidelines.

The philosophy encourages customer satisfaction and early
incremental delivery of software; small, highly motivated
project teams; informal methods; minimal software
engineering work products; and overall development
simplicity.

The development guidelines stress delivery over analysis and
design {although these activities are not discouraged), and
active and continuous communication between developers
and customers.

It encourages team structures and attitudes that make
communication (among team members, between
technologists and business people, between software
engineers and their managers) more simplistic.

It emphasizes rapid delivery of operational software and de-
emphasizes the importance of intermediate work products
{not always a good thing), it adopts the customer as a part of
the development team.

it recognizes that planning in an uncertain world has its limits
and that a project plan must be flexible.

Agility can be applied to any software process.

Agile Process

It is difficult to predict in advance which software requirements
will persist and which will change. It is equally difficult to
predict how customer priorities will change as the project
proceeds,

For many types of software, design and construction are
interleaved. That is, both activities should be performed in

tandem so that design models are proven as they are created.

It is difficult to predict how much design is necessary before
construction is used to prove the design.

Analysis, design, construction, and testing are not as
predictable (from a planning point of view) as we might like.

Agility Principles

highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development.
Agile processes harness change for the customer's
competitive advantage.

Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter
timescale.

Business people and developers must work together daily
throughout the project.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

Working software is the primary measure of progress.

Agility Principles contd....

Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Continuous attention to technical excellence and good design
enhances agility.

Simplicity—the art of maximizing the amount of work not
done—is essential.

The best architectures, requirements, and designs emerge
from self- organizing teams.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Agile development Models

Some of the Agile development models are:

Scrum

Extreme Programming
Feature driven development
Lean software Development

Scrum

Scrum is an agile software development method.

Scrum principles are used to guide development activities
within a process that incorporates the following framework
activities: requirements, analysis, design, evolution, and
delivery.

Within each framework activity, work tasks occur within a
process pattern called a sprint.

The work conducted within a sprint (the number of sprints
required for each framework activity will vary depending on
product complexity and size} is adapted to the problem at
hand and is defined and often modified in real time by the

Scrum team.

Scrum - Backlog and Sprint

Backlog— a prioritized list of project requirements or features

that provide business value for the customer. ltems can be

added to the backlog at any time(this is how the changes are

introduced).

The product manager assesses the backlog and updates
priorities as required.

Sprints—consist of work units that are required to achieve a
requirement defined in the backlog that must be fit into a
predefined time-box.

Changes (e.g., backlog work items) are not introduced during
the sprint. Hence, the sprint allows team members to work in

a short-term, but stable environment.

Scrum meetings

Scrum meetings —are short (typically 15 minutes) meetings held
daily by the Scrum team.

Three key questions are asked and answered by all team members :
1. What did you do since the last team meeting?

2. What obstacles are you encountering?

3. What do you plan to accomplish by the next team meeting?

A team leader, called a Scrum master, leads the meeting and
assesses the responses from each person.

The Scrum meeting helps the team to uncover potential problems as
early as possible.

Also, these daily meetings lead to “knowledge sccialization™ and
thereby promote a self-organizing team structure.

Scrum - Demos

Demos — deliver the software increment to the customer so
that functionality that has been implemented can be
demonstrated and evaluated by the customer.

the demo may not contain all planned functionality, but rather
those functions that can be delivered within the time-box that
was established.

Scrum Process Flow

SCOUM process
Tl

Spwint Hacklog

FRalrey

Maw functienality
it demongirated
at end of sprint

Software testing - Definition

"Testing is the process of demonstrating that errors are not
present. "

“The purpose of testing is to show that a program performs its
intended functions correctly.”

"Testing is the process of establishing confidence that a
program does what it is supposed to do.”

Testing is the process of executing a program with the intent
of finding errors.

Software Testing Principles (guidelines)

Principle Xumber |Priociple
Anecsssary part of o test 2ase 15 a definireon of the expeied
crrpar e pesulr,

LA prominer shonld aveid ezt b teal Tis o Diay o

A progranunng aegasizatca shovld oot test it s pregrame.
Therzhly dnpact e resilts ol aich s

| Dest gases must be waitten for izt sonditicns that ars mvalid
cand noexzected. as well as foa those thar are valid and sxpeated.
[Faanmming o pregeam foosee 100 daes o e b i angquesed
ko bs only Lalf e Batle: e otlier half 1» seeing wietler the
ez o what s st soppesel oonle

LA Theosaveay resr cases tnless the progrant is mly @

e AT Ay progra.

[T st malime o restines wilont wnler he tacil es-mepiien el no

lemers will b= found

[The prababilin: of the sxisrenes of mocs eiros s 3 section of 2
progr i= propartieons) to the numbezr of enars abieadys fomnd in
that szction
Tesnng 1: ao exoamely crearve and weellzemally challangang

sk,

Principle 1: A necessary part of a test case is
a definition of the expected output or resulit.

a test case must consist of two components.
+ 1. A description of the input data to the program.

+ 2. Aprecise description of the correct output of the program
for that set of input data.

Principle 2: A programmer should avoid
attempting to test his or her own program.

After a programmer has constructively designed and coded a
program, it is extremely difficult to suddenly change
perspective to ook at the program with a destructive eye.

programmer may subconsciously avoid finding errors for fear
of retribution from peers or from a supervisor, a client, or the
owner of the program or system being developed.

The program may contain errors due to the programmer's
misunderstanding of the problem statement or specification.

Principle 3: A programming organization
should not test its own programs.

it is difficult for a programming organization to be objective in
testing its own programs, because the testing process, if
approached with the proper definition, may be viewed as
decreasing the probability of meeting the schedule and the
cost objectives.

it is more economical for testing to be performed by an
objective, independent party.

Principle 4: Thoroughly inspect the
results of each test.

many subjects failed to detect certain errors, even when
symptoms of those errors were clearly observable on the
output listings.

errors that are found on later tests are often missed in the
results from earlier tests.

Principle 5: Test cases must be written for
input conditions that are invalid and

unexpected, as well as for those that are valid

and expected.

+ test cases representing unexpected and invalid input

conditions seem to have a higher error-detection yield than do
test cases for valid input conditions.

Principle 6: Examining a program to see if it
does not do what it is supposed to do is only
half the battle; the other half is seeing

Principle 8: Do not plan a testing effort
under the tacit assumption that no errors

whether the program does what it is not
supposed to do.

Frograms must be examined for unwanted side effects.

For instance, a payroll program that produces the comrect
paychecks is still an erronecus program if it also produces
extra checks for nonexistent employees or if it over- writes the
first record of the personnel file.

Principle 7: Avoid throwaway test cases
unless the program is truly a throwaway
program.

Whenever the program has to be tested again (for example,
after correcting an error or making an improvement), the test
cases must be reinvented.

More often than not, since this reinvention requires a
considerable amount of work, people tend to avoid it.

Saving test cases and running them again after changes to
other components of the program is known as regression
testing.

will be found.

incorrect definition of testing— is, the assumption that testing
is the process of showing that the program functions correctly.

the definition of testing is the process of executing a program
with the intent of finding errors.

Principle 9: The probability of the existence
of more errors in a section of a program is

proportional to the number of errors already

found in that section.

errors tend to come in clusters and that, in the typical
program, some sections seem to be much more prone to
errors than other sections, although nobody has supplied a
good explanation of why this ocours.

If a particular section of a program seems to be much more
prone to errors than other sections, then this phenomenon
tells us that, in terms of vield on our testing investment,
additional testing efforts are best focused against this error-
prone section.

Principle 10: Testing is an extremely
creative and intellectually challenging
task.

+ the creativity required in testing a large program exceeds the
creativity required in designing that program.

Conclusion - three important principles of
testing:

= Testing is the process of executing a program with the intent of
finding errors.

= A good test case is one that has a high probability of detecting
an as yet undiscovered error.

= A successful test case is one that detects an as yet
undiscovered error.

human testing methods

The two primary human testing methods are code inspections
and walkthroughs.

participants must conduct some preparatory work.

The climax is a "meeting of the minds,” at a participant
conference.

The objective of the meeting is to find errors but not to find
solutions to the errors. That is, to test, not debug.

Code Inspections

A code inspection is a set of procedures and error-detection
techniques for group code reading.

An inspection team usually consists of four people. One of the
four people plays the role of moderator.

The moderator is expected to be a competent programmer,
but he or she is not the author of the program and need not
be acquainted with the details of the program.

An Error Checklist for Inspections

An important part of the inspection process is the use of a
checklist to examine the program for common errors.

Data Reference Errors
Data-Declaration Errors

Computation Errors - Are there any computations using
variables having inconsistent {such as nonarithmetic)
datatypes?

Comparison Errors - any comparisons between variables
having different datatypes

Control-Flow Errors

Interface Errors - Does the number of parameters received by
this module equal the number of arguments sent by each of
the calling modules?

Input/Output Errors

Walkthroughs

is a set of procedures and error-detection techniques for
group code reading.

the walkthrough is an uninterrupted meeting of one to two
hours in duration.

The walkthrough team consists of three to five people.

One of these people plays a role similar to that of the
moderator in the inspection process, ancther person plays the

role of a secretary (a person who records all errors found),
and a third person plays the role of a tester.

Walkthroughs

The initial procedure is identical to that of the inspection
process:

The participants are given the materials several days in
advance to allow them to bone up on the program. However,
the procedure in the meeting is different.

Rather than simply reading the program or using error
checklists, the participants “play computer.”

The person designated as the tester comes to the meeting
armed with a small set of paper test cases—representative
sets of inputs (and expected outputs) for the program or
maodule.

During the meeting, each test case is mentally executed.

That is, the test data are walked through the logic of the
program.

The state of the program (i.e., the values of the variables) is
monitored on paper or whiteboard.

Testing strategies

Black-Box Testing
White-Box Testing

Black-Box Testing

black-box, data-driven, or input/foutput- driven testing.

view the program as a black box

concentrate on finding circumstances in which the program
does not behave according to its specifications.

In this approach, test data are derived solely from the
specifications(i.e., without taking advantage of knowledge of
the internal structure of the program).

to find all errors in the program, the criterion is exhaustive
input testing, making use of every possible input condition as
a test case.

White-Box Testing

white-box or logic-driven testing, permits you to examine the
internal structure of the program.

This strategy derives test data from an examination of the
program’s logic.

execute, via test cases, all possible paths of control flow
through the program

Equivalence class testing

Equivalence class testing is a technigue used to reduce the
number of test cases to a manageable level while still
maintaining reasonable test coverage.

First, identify the equivalence classes.

Second, create a test case for each equivalence class. You
could create additional test cases for each equivalence class
if you have the time and money.

Different types of input require different types of equivalence
classes.

An equivalence class consists of a set of data that is treated
the same by the module or that should produce the same
result. Any data value within a class is equivalent, in terms of
testing, to any other value.

Equivalence class testing

A group of tests forms an equivalence class if you believe that:

They all test the same thing.
If one test catches a bug, the others probably will too.

If one test doesn't catch a bug, the others probably won't
either.

Equivalence class testing is a technigue used to reduce the
number of test cases to a manageable size while still
maintaining reasonable coverage.

An equivalence class consists of a set of data that is treated
the same by the module or that should produce the same
result. Any data value within a class is equivalent, in terms of
testing, to any other value.

Equivalence class testing Discrete equivalence classes

* It helps testers choose a small subset of possible test cases
while maintaining reasonable coverage.

Continuous equivalence classes

» If an input condition takes on discrete values within a range of
permissible values, there are typically one valid and two
invalid classes.

B " Corporation
II'\'"’;'- _,i | i |’.-1 I. . - , Tr us t .
| -, Partnership /

1,000 it SEY. I3 N enicsiskhe

Invalid

Multiple selection equivalence class

e | Duplex

< Single Family - . Mobile Home :
~ Townhouse " Treehouse
.. Condo .’ ' :”

Applicability and Limitations

Equivalence class testing can significantly reduce the number
of test cases that must be created and executed.

It is most suited to systems in which much of the input data
takes on values within ranges or within sets.

Equivalence class testing is equally applicable at the unit,
integration, system, and acceptance test levels. All it requires
are inputs or outputs that can be partitioned based on the
system's requirements.

Boundary Value Testing

Boundary value testing focuses on the boundaries simply
because that is where so many defects hide.

identify the equivalence classes.

Second, identify the boundaries of each equivalence class.
Third, create test cases for each boundary value by choosing
one point on the boundary, cne point just below the boundary,
and one point just above the boundary.

"Below" and "above" are relative terms and depend on the
data value's units.

Create test cases for each boundary value by choosing one
point on the boundary, one point just below the boundary, and
one point just above the boundary.

Boundary value testing is most appropriate where the input is
a continuous range of values.

Applicability and Limitations

Boundary value testing can significantly reduce the number of
test cases that must be created and executed.

It is most suited to systems in which much of the input data
takes on values within ranges or within sets.

Boundary value testing is equally applicable at the unit,
integration, system, and acceptance test levels.

All it requires are inputs that can be partitioned and
boundaries that can be identified based on the system's
requirements.

Decision Table Testing

Decision tables are an excellent tool to capture certain kinds
of system requirements and to document internal system e 1
design. -
They are used to record complex business rules that a system
must implement. In addition, they can serve as a guide to
creating test cases.

ll.i-'_‘l"lﬂn:r' _

Action

Decision Table Testing

Decision tables are an excellent tool to capture certain kinds
of system requirements and to document internal system
design.

They are used to record complex business rules that a system
must implement.

In addition, they can serve as a guide to creating test cases.
Decision tables represent complex business rules based on a
set of conditions.

Conditions 1 through m represent various input conditions.

Actions 1 through n are the actions that should be taken
depending on the various combinations of input conditions.
Each of the rules defines a unigue combination of conditions
that result in the execution ("firing") of the actions associated
with that rule.

the actions do not depend on the order in which the conditions
are evaluated, but only on their values. (All values are
assumed to be available simultaneously.}

Also, actions depend only on the specified conditions, not on
any previous input conditions or system state.

Adding a single action to a decision table.
An auto insurance company gives discounts to drivers who are
married andfor good students. Let's begin with the conditions. The
following decision takle has two conditions, each one of which
takes on the values Yes or No.

Rule 1 Rule 2 Rule 3 Rule 4

Conditions

~onditions

uders? g}]
Actions I D D
25 S0 0

Discount (%) =]

the table contains all combinations of the conditions. Given » Decision tables may specify more than one action for each
two binary conditions (Yes or No), the possible combinations rule. Again, these rules may be unique or may be shared.
are {Yes, Yes}, {Yes, No}, {No, Yes}, and {No, No}.

Each rule represents one of these combinations.

As a tester we will verify that all combinations of the
conditions are defined.

Missing a combination may result in developing a system that
may not process a particular set of inputs properly.

Mow for the actions. Each rule causes an action to "fire.”

Each rule may specify an action unigue to that rule, or rules
may share actions.

A decision table with multiple actions.

n this situation, choosing test cases is simple—each ruie (vertical _ _ _
column) becomes a test » Choosing appropriate values we create the following test

case. The Conditions specify the inputs and the Actions specify Cases.

the expected results.
Test Case ID 1_::r:r|'|r:litin:|n-

% Rule 1]||[Rule 2 IT Rule 3 l[Rule 4 QQ

1c3

100 £ Do B

conditions can be more complex- A decision
table with non-binary conditions.

_ If the system under test has complex business rules, and if
[Rufe 1 | Rule 2 || Rule 3] Rule 4 your business analysts or designers have not documented
these rules in this form, testers should gather this information
and represent it in decision table form.
The reason is simple. Given the system behavior represented
in this complete and compact form, test cases can be created
directly from the decision table.
In testing, create at least one test case for each rule. If the
rule's conditions are binary, a single test for each combination
is probably sufficient.
In this situation choosing test cases is 5Iight!1,r IT.'IDFE' u:u:lmplenf:.— each rule {vertical On the other hand, if a condition is a range of values, consider
column) becomes a test case but values satisfying the conditions must be chosen. testing at both the low and high and of the range. In this way
we merge the ideas of Boundary Value testing with Decision
Table testing.

To create a test case table simply change the row and column
headings:

A decision table converted to a test case table.

Expected Resulis

ACtn-1

Do G

Decision tables are used to document complex business rules
that a system must implement. In addition, they serve as a
guide to creating test cases.

Conditions represent various input conditions. Actions are the
processes that should be executed depending on the various
combinations of input conditions. Each rule defines a unique
combination of conditions that result in the execution ("firing")
of the actions associated with that rule.

Create at least one test case for each rule. If the rule's
conditions are binary, a single test for each combination is
probably sufficient. On the other hand, if a condition is a range
of values, consider testing at both the low and high end of the
range.

State-Transition Testing

excellent tool to capture certain types of system requirements and to
document internal system design,

These diagrams document the events that come into and are
processed by a system as well as the system’s responses.

they specify very little in terms of processing rules.

When a system must remember something about what has
happened before or when valid and invalid orders of operations
exist, state-transition diagrams are excellent tools to record this
information.

state-transition diagram represents one specific entity (in this case a
Reservation). |t describes the states of a reservation, the events
that affect the reservation, the transitions of the reservation from one
state to another, and actions that are initiated by the reservation.

Defining the terms

State (represented by a circle}—A state is a condition in which
a system is waiting for one or more events. States
"remember” inputs the system has received in the past and
define how the system should respond to subsequent events
when they occur. These events may cause state-transitions
and/or initiate actions. The state is generally represented by
the values of one or more variables within a system.

Transition {represented by an arrow}—A transition represents
a change from one state to another caused by an event.

Defining the terms contd...

Event {representad by a label on a transition)}—An event is something that
causes the system to change state. Generally, it is an event in the outside
world that enters the system through its interface. Sometimes it is
generated within the system such as Timer expires or Quantity on Hand
goes below Reorder Point. Events are considered to be instantansous.
Events can be independent or causally related (event B cannot take place
before event A). When an event occurs, the system can change state or
remain in the same state and/or execute an action. Events may have

parameters associated with them. For example, Pay Money may indicate
Cash, Check, Debit Card, or Credit Card.

Action {represented by a command following a "i"+—An action is an
operation initiated because of a state change. It could be print a Ticket,
display a Screen, turn on a Motor, etc. Often these actions cause
something to be created that are outputs of the system. Note that actions
geeur on transitions between states. The states themselves are passive.

The entry point on the diagram is shown by a black dot while the exit point
is shown by a bulls-eye symbol.

1. The Reservation is Made.

The circle represents one state of the Reservation—in this
case the Made state. The arrow

shows the transition into the Made state. The description on
the arrow, givelnfo, is an event

that comes into the system from the outside world. The
command after the "/ denotes an

action of the system; in this case startPayTimer. The black dot
indicates the starting point of the diagram.

A

. “-.'l'_n'. “nq
G"::ﬁ?a‘lf“
b

2. The Reservation transitions to the Paid state.

Sometime after the Reservation is made, but (hopefully)
before the PayTimer expires, the Reservation is paid for. This
is represented by the arrow labeled PayMoney. When the
Reservation is paid it transitions from the Made state to the
Faid state.

payMaonay
—

3. The Reservation transitions to the Ticketed
state.
From the Paid state the Reservation transitions to the
Ticketed state when the print

command (an event) is issued. Note that in addition to
entering the Ticketed state, a Ticket is

output by the system,

The PayTimer expires and the

. Reservation is cancelled for nonpayment.
+ From the Ticketed state we giveTicket to the gate agent to

board the plane. » No. If the Reservation is not paid for in the time allotted (the
PayTimer expires), it is cancelled for non-payment.

5. The path ends. Cancel the Reservation from the Made
state.

+ After some other action or period of time, the state-transition

* path ends at the bulls-eye symbol. Customers sometimes cancel their reservations. From the

Made state the customer (through the reservation agent) asks
to cancel the Reservation. A new state, Cancelled By
Customer, is required.

Cancellation from the Paid state. state-transition diagrams

» state-transition diagrams express complex system rules and

*» a Reservation can be cancelled from the Paid state. In this interactions in a very compact notation.

case a Refund should be generated and leave the system.
The resulting state again is Cancelled By Customer.

Cancellation from the Ticketed state. State-Transition Tables

From the Ticketed state the customer can cancel the Reservation. In that State-transition tables consist of four columns—Current State,
case a Refund should be generated and the next state should be Cancelled Event, Action, and Next State.

EilC;Eh'gnmﬁF;Eil;tiul’zft':ﬁ“‘i"rfi:;ﬁéﬁ}?:ié::rz:::;’;EE:’::EQH?;??ﬁsai;te:;‘fcgzt state-transition tables may be easier to use in a complete and
¥ P : systematic manner.

ane new notational element—square brackets [] that contain a conditional

that can be evaluated either True or False. This conditional acts as a a state-transition table is that it lists all possible state-

guard allowing the transition anly if the condition is true. transition combinations.
creating a state-transition table often unearths combinations
that were not identified, documented, or dealt with in the
requirements. It is highly beneficial to discover these defects
before coding begins.
Using a state-transition table can help detect defects in
implementation that enable invalid paths from one state to
another.
The disadvantage of such tables is that they become very
large very quickly as the number of states and events
increases. In addition, the tables are generally sparse; that is,
most of the cells are empty.

State-Transition Table

= =

Lbicz 1.
-

s g lisern

LT ¢

2]
X
v
o
=
-
@
o
0
-
0
)
»
®
0

Information in the state-transition diagrams can easily be used
to create test cases. Four different levels of coverage can be
defined:

1. Create a set of test cases such that all states are "visited"
at least once under test. The set of three test cases shown
below meets this requirement. Generally this is a weak level
of test coverage.

Create a set of test cases such that all paths are executed at
least once under test. While this level is the most preferred
because of its level of coverage, it may not be feasible. If the
state-transition diagram has loops, then the number of possible
paths may be infinite. For example, given a system with two
states, A and B, where A transitions to B and B transitions to A. A
few of the possible paths are: A—B

and so on forever. Testing of loops such as this can be important
if they may result in accumulating computational errors or
resource loss (locks without corresponding releases, memory
leaks, etc.).

A set of test cases that trigger all transitions
at least once.

Create a set of test cases such that all transitions are exercised
at least once under test. This level of testing provides a good
level of coverage without generating large numbers of tests.
This level is generally the one recommended.

Applicability and Limitations

State-Transition diagrams are excellent tools to capture
certain system requirements, namely those that describe
states and their associated transitions. These diagrams then
can be used to direct our testing efforts by identifying the
states, events, and transitions that should be tested.

State-Transition diagrams are not applicable when the system
has no state or does not need to respond to real-time events
from outside of the system. An example is a payroll program
that reads an employee's time record, computes pay,
subtracts deductions, saves the record, prints a paycheck,
and repeats the process.

Pairwise Testing

Consider these situations:

AWeb site must operate correctly with different browsers—Internet
Explorer 5.0, 5.5, and 6.0, Netscape 6.0, 6.1, and 7.0, Mozilla 1.1, and
Opera 7,

using different plug-ins —RealPlayer, MediaFlayer, or nong;

running on different client operating systems— Windows 85, 98, ME,
NT, 2000, and XP;

receiving pages from different servers—I|15, Apache, and WeblLogic;
running on different server operating systems—Windows NT,
2000, and Linux.
Web Combinations
8 browsers
3 plug-ins
& client operating systems
3 servers
3 server OS5
1,296 combinations.

A bank has created a new data processing system that is ready
for testing. This bank has different kinds of customers—
consumers, very important consumers, businesses, and non-
profits; different kinds of accounts—checking, savings,
mortgages, consumer loans, and commercial loans; they operate
in different states, each with different regulations—California,
Mevada, Utah, |daho, Arizona, and New Mexico.
Bank Combinations

4 customer types

5 account types

6 states

120 combinations.

+ In an object-oriented system, an object of class A can pass a

message containing a parameter P to an object of class X
Classes B, C, and D inherit from A so they too can send the
message. Classes Q, R, 5, and T inherit from P so they too
can be passed as the parameter, Classes Y and Z inherit from
X 50 they too can receive the message.

00 Combinations
4 senders
S parameters
3 receivers
60 combinations.

Each has a large number of combinations that should be
tested. Each has a large number of combinations that may be
risky if we do not test. Each has such a large number of
combinations that we may not have the resources to construct
and run all the tests, there are just too many. We must,
somehow, select a reasonably sized subset that we could test
given our resource constraints.

Random selection can be a very good approach to
choosing a subset but most people have a difficult time
choosing truly randomly.

significant reductions

If a system had four different input parameters and each one
could take on one of three different values, the number of
combinations is 34 which is 81. It is possible to cover all the
pairwise input combinations in only nine tests.

If a system had thiteen different input parameters and each
ane could take on one of three different values, the number of
combinations is 313 which is 1,594,323, It is possible to cover
all the pairwise input combinations in only fifteen tests.

If a system had twenty different input parameters and each

one could take on one of ten different values, the number of
combinations is 1020. It is possible to cover all the pairwise
input combinations in only 180 tests.

Fairwise testing may not choose combinations which the
developers and testers know are either frequently used or
highly risky. If these combinations exist, use the pairwise
tests, then add additional test cases to minimize the risk of
missing an important combination.

echniques are used

creating test cases
« Orthogonal arrays [faximum vake
+ Allpairs algorithm.

Orthogonal array notation

Clamiper of 1ows

Orthogonal Arrays

* An orthogonal array is a two-dimensional array of numbers
that has the property—choose any two columns in the array.
All the pairwise combinations of its values will occur in every
pair of columns.

Table 5-2: Lg(3* Orthagonal Array

The L4(23) array is orthogonal; that is, choose

any two columns, all the pairwise combinations will occur in all
the column pairs. L4 means an orthogonal array with four
rows, (23} is not an exponent. It means that the array has
three columns, each with eitheralora 2.

Examine columns 1 and 2—do the nine combinations of 1, 2,
and 3 all appear in that column pair? Yes.

Examine columns 1 and 3—do the nine combinations of 1, 2,
and 3 appear in that column pair? Yes, although in a different
order.

Examine columns 1 and 4—do the nine combinations appear
in that column pair also? Yes they do.

Continue on by examining other pairs of columns—2 and 3, 2
and 4, and finally 3 and 4.

The L9{34) array is orthogonal; that is, choose any two
columns, all the combinations will occur in all of the column
pairs.

Using Orthogonal Arrays

The process of using orthogonal arrays to select pairwise
subsets for testing is:

Identify the variables.

Determine the number of choices for each variable.

Locate an orthogonal array which has a column for each
variable and values within the columns that correspond to the
choices for each variable.

Map the test problem onto the orthogonal array.
Construct the test cases.

Allpairs Algorithm

* an algorithm that generates the pairs directly without resorting

to an "external” device

Use Case Testing

test cases that exercise a system's functionalities from start to
finish by testing each of its individual transactions.

"use case" is a scenario that describes the use of a system by
an actor to accomplish a specific goal.

By "actor" we mean a user, playing a role with respect to the
system, seeking to use the system to accomplish something
worthwhile within a particular context.

Actors are generally people although other systems may also
be actors.

A "scenario” is a sequence of steps that describe the
interactions between the actor and the system.

The set of use cases makes up the functional requirements of
a system.

Viodeling Language notion for
use cases

* The stick figures represent the actors, the ellipses represent
the use cases, and the arrows show which actors initiate
which use cases.

use Cases - Uses

Capture the system's functional requirements from the user's
perspective; not from a technical perspective, and irrespective
of the development paradigm to be used.

Can be used to actively involve users in the requirements
gathering and definition process.

Provide the basis for identifying a system's key internal
components, structures, databases, and relationships.
Serve as the foundation for developing test cases at the
system and acceptance level.

create at least one test case for the main success scenario
and at least one test case for each extension.

Because use cases do not specify input data, the tester must
select it.

equivalence class and boundary value techniques can be
used.

Always remember to evaluate the risk of each use case and
extension and create test cases accordingly.

To create test cases, start with normal data for the most often used
transactions. Then move to boundary values and invalid data. Next,
choose transactions that, while not used often, are vital to the
success of the system (i.e., Shut Down The Nuclear Reactor].

Make sure you have at least one test case for every Extension in the
use case.

Try transactions in strange orders.
Violate the preconditions {if that can happen in actual use).

If a transaction has loops, don't just loop through once or twice—be
diabolical.

Look for the longest, most convoluted path through the transaction
and try it.

If transactions should be executed in some logical order, try a
different order,

Instead of entering data top-down, try bottom-up. Create "goofy" test
cases.

If you don't try strange things, you know the users will.

White box testing

White box testing isa strategy in which testing is based on the
internal paths, structure, and implementation of the software
under test {SUT).

white box testing generally requires detailed programming skills.

White box testing can be applied at all levels of system
development—unit, integration, and system.

White box testing is more than code testing—it is path testing.
Generally, the paths that are tested are within a module (unit
testing). But we can apply the same technigques to test paths
between modules within subsystems, between subsystems
within systems, and even between entire systems.

general white box testing process

The SUT's implementation is analyzed.
Paths through the SUT are identified.

Inputs are chosen to cause the SUT to execute selected
paths. This is called path sensitization. Expected results for
those inputs are determined.

The tests are run.
Actual outputs are compared with the expected outputs.

A determination is made as to the proper functioning of the
SUT.

Disadvantages

the number of execution paths may be so large than they cannot all
be tested. Attempting to test all execution paths through white box
testing is generally as infeasible as testing all input data
combinations through black box testing.
the test cases chosen may not detect data sensitivity errors, For
axample:

P=rT;

rhay axacute coracty axcapt whean r=0.

y=2" I should read y=x2

will pass for test cases x=0, y=0 and x=2, y=4

white box testing assumes the control flow is correct (or very close
to correct). Since the tests are based on the existing paths,
nonexistent paths cannot be discovered through white box testing.

the tester must have the pragramming skills to understand and
evaluate the software under test. Unfortunately, many testers today
do not have this background

Advantages Control Flow Graphs

+ When using white box testing, the tester can be sure that Control flow graphs are the foundation of control flow testing.
every path through the software under test has been identified These graphs document the module's control structure.

and tested. Modules of code are converted to graphs, the paths through
the graphs are analyzed, and test cases are created from that
analysis.

Control flow graphs consist of a number of elements.

Control Flow Testing Process Blocks

* This testing approach identifies the execution paths through a A process block is a sequence of program statements that
module of program code and then creates and executes test execute sequentially from beginning to end.

cases to cover those paths. No entry into the block is permitted except at the beginning.
+ Path: A sequence of statement execution that begins at an Mo exit from the block is permitted except at the end.
entry and ends at an exit. Once the block is initiated, every statement within it will be
executed sequentially.

Process blocks are represented in control flow graphs by a
bubble with one entry and one exit.

Decision Point

A decision point is a point in the module at which the control
flow can change.

Most decision points are binary and are implemented by if-
then-else statements.

Multi-way decision points are implemented by case
statements.

They are represented by a bubble with one entry and multiple
exits.

f {a==2) {x=x+2)
olse {x=x'2;)
p=q'r:

if {bic=3) {z=x+y:}

Junction Point Levels of Coverage

* Ajunction point is a point at which control flows join together. "coverage" means the percentage of the code that has been
tested vs. that which is there to test. In control flow testing we
define coverage at a number of different levels.

Level 1
Level 0
Level 2
Level 3
Level 4
Level 5
Level 7
Level 6

Levels of Coverage

Level 1 - The lowest coverage level is "100% statement coverage”
(also is referred to as "statement coverage"). This means that every
statement within the module is executed, under test, at least once.
Level 0 - there is a level of coverage below "100% statement
coverage.” That level is defined as "test whatever you test; let the
users test the rest”

Level 2 - 100% decision coverage - also called "branch coverage.”
At this level enough test cases are written so that each decision that
has a TRUE and FALSE outcome is evaluated at least once.

Level 3 - 100% condition coverage " At this level enough test cases
are written so that each condition that has a TRUE and FALSE
outcome that makes up a decision is evaluated at least once.
Condition coverage is usually better than decision coverage
because every individual condition is tested at least once while
decision coverage can he achieved without testing every condition.

Levels of Coverage

Level 4 —
if(x&8&y) {conditionedStatement;}
/f note: && indicates logical AND

We can achieve condition coverage with two test cases
(x=TRUE, y=FALSE and x=FALSE, y=TRUE} but note that
with these choices of data values the conditionedStatement
will never be executed. Given the possible combination of
conditions such as these, to be more complete "100%
decision/condition” coverage can be selected. At this level test
cases are created for every condition and every decision.

Level 5 - 100% multiple condition coverage - Achieving 100%
multiple condition coverage also achieves decision coverage,
condition coverage, and decision/condition coverage. Note
that multiple condition coverage does not guarantee path
coverage.

Levels of Coverage

+ Level 7 - 100% path coverage - For modules with loops, the

number of paths can be enormous and thus pose an
intractable testing problem.

Level 6 - When a module has loops in the code paths such
that the number of paths is infinite, a significant but
meaningful reduction can be made by limiting loop execution
to a small number of cases. The first case is to execute the
loop zero times; the second is to execute the loop one time,
the third is to execute the loop n times where n is a small
number representing a typical loop value; the fourth is to
execute the loop its maximum number of times m. In additicn
you might try m-1 and m+1.

Structured Testing / Basis Path Testing

uses an analysis of the topology of the control flow graph to
identify test cases.

* The structured testing process consists of the following steps:

— Derive the control flow graph from the software module.
— Compute the graph's Cyclomatic Complexity (C).

— Select a set of C basis paths.

— Create a test case for each basis path.

— Execute these tests.

control flow graph - example

Cyclomatic Complexity (C) of a graph as C = edges - nodes + 2
Edges are the arrows, and nodes are the bubbles on the graph.

The preceding graph has 24 edges and 12 nodes for a Cyclomatic

Complexity of 24-19+2 =7.

In some cases this computation can be simplified. If all decisions in

the graph are binary {they have exactly two edges flowing out),
and there are p binary decisions, then C = p+1

Cyclomatic Complexity is exactly the minimum number of
independent, nonlooping paths (called basis paths) that can, in
linear combination, generate all possible paths through the module.

In terms of a flow graph, each basis path traverses at least one edge

that no other path does,

Creating and executing C test cases, based on the basis paths,
guarantees both branch and statement coverage.

Applicability and Limitations

Control flow testing is the cornerstone of unit testing. It should be
used for all medules of code that cannot be tested sufficiently
through reviews and inspections. Its limitations are that the tester
must have sufficient programming skill to understand the code and
its control flow. In addition, control flow testing can be very time
consuming because of all the modules and basis paths that
comprise a system.

Data Flow Testing

Data flow testing is a powerful tool to detect improper use of
data values due to coding errors.

it shows the processing flow through a module.

In addition, it details the definition, use, and destruction of
each of the module’s variables.

construct these diagrams and verify that the define-use-kill
patterns are appropriate.

First, we will perform a static test of the diagram. By "static”
we mean we examine the diagram {formally through
inspections or informally through look-sees).

Second, we perform dynamic tests on the module. By
"dynamic" we mean we construct and execute test cases.
Let's begin with the static testing.

Variables defined within a block are created when their
definitions are executed and are automatically destroyed at
the end of a block. This is called the "scope” of the variable.
WVariables can be used in computation (a=b+1). They can also
ke used in conditionals {if (a=42}). In both uses it is equally
important that the vanable has been assigned a value before
itis used.

Examine time-sequenced pairs of defined, used, and killed
variable references.

Static Data Flow Testing

+ The control flow diagram annotated with define-use-kill
information for each of the module's variables.

The control flow diagram annotated with define-use-kill
information for the x variable.

Dynamic Data Flow Testing

The data flow testing process is to choose enough test cases
so that:

— Every "define" is traced to each of its "uses”
— Every "use" is traced from its corresponding "define"

enumerate the paths through the module.

This is done using the same approach as in control flow
testing: Begin at the module's entry point, take the leftmost
path through the module to its exit.

Return to the beginning and vary the first branching condition.
Follow that path to the exit.

Return to the beginning and vary the second branching
condition, then the third, and so on until all the paths are
listed.

Then, for every variable, create at least one test case to cover
every define-use pair.

Applicability and Limitations

Data flow testing builds on and expands control flow testing
techniques.

As with control flow testing, it should be used for all modules
of code that cannot be tested sufficiently through reviews and
inspections.

Its limitations are that the tester must have sufficient
programming skill to understand the code, its control flow, and
its variables.

Like control flow testing, data flow testing can be very time
consuming because of all the modules, paths, and variables
that comprise a system.

Regression testing

* Regression testing is the process of testing changes to
computer programs to make sure that the older programming
still works with the new changes.

What's the strategy?

Software maintenance is an

activity which includes

£n |'IdI'ICCﬂ'I{"IHS, creor

corrections, optimization and

deletion of existing features.

These modifications may cause Regression Testirg
the system to work incorrectly,

Thercfore , Regression Testing

becomes necessary. Regression

« Regression testing is a normal part of the program
development process and, is done by code testing specialists.

Regression Test
Selection

i :) Prigrititation o
Testing can be carried out using Test Canas
following techniques:

[fe 1em

Retest All

» All the tests in the existing test bucket or suite should be re-

When to do it executed.

* This is very expensive as it requires huge time and resources.
Regression Testing is required when thereis a -
Change in requirements and code is modified
according to the requirement
New feature is added to the software
Defect fixing
Performance issue fix

What's the strategy? What’s the strategy?

Contimues, Cantinues .

Areato focus during testing
* Test cases which have frequent defects,
Functionalities which are more visible to the users.
Test cases which verify core features of the product.

Test cases of Functionalities which has undergone more and
recent changes.

Regression Test Selection

Instead of re-executing the entire test suite, it is
better to select part of test suite to be run.

Tesi cases selected can be categorized as 1) Reusable :
Test Cases z) Obsolete Test Cases. All Integration Test Cases.

All Complex Test Cases.
Boundary value test cases.
Sample of Successlul test cases,
Sample of Failure test cases

Re-usable Test cases can be used in succeeding
regression cycles. Obsolete Test Cases can't be used
in succeeding cycles.

What's the strategy? Pros and Cons

Cootinues. Challenges for regression testing

Prioritization of Test Cases

- With successive regression runs, test suites become
fairly large. Due to time and budget constraints, the
entire regression test suite cannot be executed.

Prioritize the test cases depending on
business impact, critical & frequently used
functionalities . Selection of test cases based
on priority will greatly reduce the regression

) ~ Minimizing test suite while achieving maximum
test suite.

test coverage remains a challenge.

- Determination of frequency of Regression Tests
, i.e., after every modification orevery build update
or after a bunch of bug fixes, is a challenge.

Non Functional requirements (NFRs)

Capacity
Throughput and
FPerformance

Performance is a measure of the time taken to process a
single transaction, and can be measured either in isolation or
under load.

Throughput is the number of transactions a system can
process in a given timespan. It is always limited by some
bottleneck in the system.

The maximum throughput a system can sustain, for a given
workload, while maintaining an acceptable response time for
each individual request, is its capacity.

Menfunctional requirements (NFRs) are important because
they present a significant delivery risk to software projects.

MFRs are referred to as "quality attributes”

Managing Nonfunctional Requirements

At the beginning of the project, everybody involved in
delivery—developers, operations personnel, testers, and the
customer—need to think through the application’s NFRs and
the impact they may have on the system architecture, project
schedule, test strategy, and overall cost.

Analyzing Nonfunctional Requirements

Create specific sets of stories or tasks for nonfunctional
requirements as well, especially at the beginning of a project.

Adding nonfunctional acceptance criteria to other
requirements.

Supply a reasonable level of detail when analyzing NFRs .

Recognize the most common causes of capacity problems
and work to aveoid running into them.

strategy to address capacity problems

1. Decide upon an architecture for your application. Pay particular attention

to process and network boundaries and IV0 in general.

2. Understand and use patterns and avoid antipattems that affect the stability
and capacity of your system.

3. keep the team warking within the boundaries of the chasen architecture but,
other than applying pattems where appropriate, ignore the lure to optimize

for capacity. Encourage clarity and simplicity. Never compromise readability for
capacity without an explicit test that demonstrates the value.

4, Pay attention to the data structures and algorithms chosen, making sure that
their properties are suitable for your application

§. Be extremely careful about threading.

6. Establish automated tests that assert the desired level of capacity. When these
tests fail, use them as a guide to fixing the problems.

7. Use tools as a focused atternpt to fix problems identified by tests, not as a
general “make it as fast as possible” strategy.

8. Wherever you can, use real-world capacity measures. Your production system
is your anly real source of measurement. Use it and understand what it is

telling you. Pay particular attention to the number of users of the system,

their patterns of behavior, and the size of the production data set.

Measuring capacity

Measuring capacity involves investigating a broad spectrum of
characteristics of an application. Here are some types of
measurements that can be performed:

Scalability testing. How do the response time of an individual
request and the number of possible simultaneous users
change as we add more servers, services, or threads?
Longevity testing. This involves running the system for a long
fime to see if the performance changes over a protracted
period of operation. This type of testing can catch memory
leaks or stability problems.

Throughput testing. How many transactions, or messages, or
page hits per second can the system handle?

Load testing. What happens to capacity when the load on the
application increases to production-like proportions and
beyond? This is perhaps the most common class of capacity
testing.

Automating Capacity Testing

* an automated capacity test suite should be created and run against
every change to the system that passes the commit stage and
(optionally) the acceptance test stage.

Capacity tests should,

* Test specific real-world scenarios, so we don't miss important bugs in
real-world use through overly abstract testing

* Have a predefined threshold for success, so we can tell that they have
passed

» Be of short duration, so that capacity testing can take place in a
reasonable length of time

* Be robust in the face of change, to avoid constant rework to keep up
with changes to the application

» Be composable into larger-scale complex scenarios, so that we can
simulate real-world patterns of use

* Be repeatable, capable of running sequentially and in parallel, so that
we can both build suites of tests to apply load and run longevity tests

Benchmark-style capacity tests

An important aspect of capacity testing is the ability to
simulate realistic use scenarios for a given application.

The alternative to this approach is to benchmark specific
technical interactions in the system: "how many transactions
per second can the database store?”, "How many messages
per second can the message quele convey?”

Benchmark-style capacity tests are extremely useful for
guarding against specific problems in the code and optimizing
code in a specific area. They can be useful by providing
information to help with technology selection processes.

Scenario-based testing

Include scenario-based testing into our capacity testing
strateqy.

We represent a specific scenario of use of the system as a
test, and evaluate that against our business predictions of
what it must achieve in the real world.

Each of our scenario-based tests should be capable of
running alongside other capacity tests involving other
interactions.

Defining Success and Failure for Capacity
Tests

Success or failure is often determined by a human analysis of the
collected measurements,

An extremely useful property of any capacity test system if it is also
able to generate measurements, providing insight into what
happened, not just a binary report of failure or success.

There are two strategies to adopt here.

First, aim for stable, reproducible results. As far as practically
possible, isolate capacity test enviranments from other influences
and dedicate them to the task of measuring capacity. This minimizes
the impact of other, non-test-related, tasks and so makes the results
more consistent.

Next, tune the pass threshold for each test by ratcheting it up once
the test is passing at a minimum acceptable level.

The Capacity-Testing Environment

Absolute measurements of the capacity of a system should
ideally be carried out in an environment that replicates the
praduction environment in which the system will ultimately
run.

If capacity or performance is a serious issue for your
application, make the investment and create a clone of your
production environment for the core parts of your system.

In the real world, the ideal of capacity testing in an exact
replica of the production environment isn’t always possible.
While capacity testing on lower-specification hardware will
highlight any serious capacity problems, it won't be able to
demonstrate that the application can fully meet its goals.

Limit the test environment costs and to provide some sensibly
accurate perfc}rmance measures is available where the
application is to be deployed into production on a farm of
servers

L]

Automating Capacity Testing

Add capacity testing as a stage to the deployment pipeline. an
automated capacity test suite should be created and run against
every change to the system that passes the commit stage and
{optionally) the acceptance test stage.

add automated capacity testing as a wholly separate stage in our
deployment pipeline,

Models for capacity testing

A fully automated deployment gate — unless the tests in the capacity
test stage all pass, you can't deploy the application without a manual
overide.

If there are real issues of throughput or latency, or information that is
only relevant or accurate for specific windows of time, automated
tests can act very effectively as executable specifications that can
assert that the reguirement is met,

The acceptance test stage in the deployment pipeline is a template
for all subsequent testing stages, including capacity testing. For
capacity tests, as for others, the stage begins by preparing for
deployment, deploying, then verifying that the environment and
application are correctly configured and deployed. Only then are the
capacity tests run.

The capacity test stage of the deployment
pipeline

Capacity test stage

Monfunctional requirements are the software eguivalent of a
bridge builder making sure that the chosen beams are strong
enough to cope with the expected traffic and weather. These
requirements are real, they have to be considered, but they
aren't what is in the mind of the business people paying for
the bridge.

technical people must work closely with customers and users
to determine the sensitivity points of our application and
define detailed nonfunctional requirements based upon real
business value.

Once this work has been done, the delivery team can decide
upon the correct architecture to use for the application and
create requirements and acceptance criteria capturing the
nonfunctional requirements in the same way that functional
requirements are captured. It thus becomes possible to
estimate the effort involved in meeting nonfunctional
requirements and prioritize them in the same way as
functional requirements.

Once this work is done, the delivery team needs to create and
maintain automated tests to ensure that these requirements
are met. These tests should be run as part of your
deployment pipeline every time a change to your application,
infrastructure, or configuration passes the commit test and
acceptance test stages.

Use your acceptance tests as a starting point for broader
scenario-based testing of NFRs—this is a great strategy to
get comprehensive, maintainable coverage of the
characteristics of the system.

