Miscellaneous Examples

Example 33 Coloured balls are distributed in four boxes as shown in the following table:

Box		Colour		
	Black	White	Red	Blue
I	3	4	5	6
11	2	2	2	2
Ш	1	2	3	1
IV	4 00	3	1	5

A box is selected at random and then a ball is randomly drawn from the selected box. The colour of the ball is black, what is the probability that ball drawn is from the box III?

Solution Let A, E₁, E₂, E₃ and E₄ be the events as defined below

A: a black ball is selected

E₁: box I is selected

E, : box II is selected

E, : box III is selected

E₄: box IV is selected

Since the boxes are chosen at random,

Therefore

$$P(E_1) = P(E_2) = P(E_3) = P(E_4) = \frac{1}{4}$$

Also

$$P(A|E_1) = \frac{3}{18}$$
, $P(A|E_2) = \frac{2}{8}$, $P(A|E_3) = \frac{1}{7}$ and $P(A|E_4) = \frac{4}{13}$

P(box III is selected, given that the drawn ball is black) = $P(E_1|A)$. By Bayes theorem,

$$P(E_{3}|A) = \frac{P(E_{3}) \cdot P(A|E_{3})}{P(E_{1})P(A|E_{1}) + P(E_{2})P(A|E_{2}) + P(E_{3})P(A|E_{3}) + P(E_{4})P(A|E_{4})}$$

$$= \frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{7} + \frac{1}{4} \times \frac{4}{13}} = 0.165$$

Example 34 Find the mean of the Binomial distribution B $\left(4, \frac{1}{2}\right)$.

Solution Let X be the random variable whose probability distribution is B $\left[4, \frac{1}{3}\right]$

Here

$$n = 4$$
, $p = \frac{1}{3}$ and $q = 1 - \frac{1}{3} = \frac{2}{3}$

We know that

$$P(X = x) = {}^{4}C_{x} \left(\frac{2}{3}\right)^{4-x} \left(\frac{1}{3}\right)^{x}, x = 0, 1, 2, 3, 4.$$

i.e. the distribution of X is

x_i	$\mathbf{P}(\mathbf{x}_i)$	$\mathbf{x}_i \mathbf{P}(\mathbf{x}_i)$
0	${}^4C_0\left(\frac{2}{3}\right)^4$	0
1	$^{4}C_{1}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$	${}^4C_1\left(\frac{2}{3}\right)^3\left(\frac{1}{3}\right)$

2	${}^{4}C_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}$	$2\left({}^{4}C_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}\right)$
3	${}^4C_3\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^3$	$3\left({}^{4}C_{3}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{3}\right)$
4	${}^{4}C_{4}\left(\frac{1}{3}\right)^{4}$	$4\left({}^{4}C_{4}\left(\frac{1}{3}\right)^{4}\right)$

Now Mean (µ) =
$$\sum_{i=1}^{4} x_i p(x_i)$$

= $0 + {}^{4}C_{1} \left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right) + 2 \cdot {}^{4}C_{2} \left(\frac{2}{3}\right)^{2} \left(\frac{1}{3}\right)^{2} + 3 \cdot {}^{4}C_{3} \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^{3} + 4 \cdot {}^{4}C_{4} \left(\frac{1}{3}\right)^{4}$
= $4 \times \frac{2^{3}}{3^{4}} + 2 \times 6 \times \frac{2^{2}}{3^{4}} + 3 \times 4 \times \frac{2}{3^{4}} + 4 \times 1 \times \frac{1}{3^{4}}$
= $\frac{32 + 48 + 24 + 4}{3^{4}} = \frac{108}{81} = \frac{4}{3}$

Example 35The probability of a shooter hitting a target is $\frac{3}{4}$. How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

SolutionLet the shooter fire n times. Obviously, n fires are n Bernoulli trials. In each trial, p = probability of hitting the target = $\frac{3}{4}$ and q' = probability of not hitting the

target =
$$\frac{1}{4}$$
. Then $P(X = x) = {}^{n}C_{x} q^{n-x} p^{x} = {}^{n}C_{x} \left(\frac{1}{4}\right)^{n-x} \left(\frac{3}{4}\right)^{x} = {}^{n}C_{x} \frac{3^{x}}{4^{n}}$.

Now, given that,

P(hitting the target at least once) > 0.99

i.e.
$$P(x \ge 1) > 0.99$$

581

$$1 - P(x = 0) > 0.99$$

$$1 - {^nC_0} \frac{1}{4^n} > 0.99$$

$$^{n}C_{0}\frac{1}{4^{n}} < 0.01$$
 i.e. $\frac{1}{4^{n}} < 0.01$

$$4^n > \frac{1}{0.01} = 100$$
 ... (1)

The minimum value of n to satisfy the inequality (1) is 4.

Thus, the shooter must fire 4 times.

Example 36A and B throw a die alternatively till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts first.

SolutionLet S denote the success (getting a '6') and F denote the failure (not getting a '6').

Thus,

$$P(S) = \frac{1}{6}, P(F) = \frac{5}{6}$$

$$P(A \text{ wins in the first throw}) = P(S) = \frac{1}{6}$$

A gets the third throw, when the first throw by A and second throw by B result into failures.

Therefore, P(A wins in the 3rd throw) = P(FFS) = P(F)P(F)P(S) = $\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$

$$= \left(\frac{5}{6}\right)^2 \times \frac{1}{6}$$

P(A wins in the 5th throw) = P (FFFFS) = $\left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$ and so on.

Hence.

P(A wins) =
$$\frac{1}{6} + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right) + \dots$$

$$=\frac{\frac{1}{6}}{1-\frac{25}{36}}=\frac{6}{11}$$

$$P(B \text{ wins}) = 1 - P(A \text{ wins}) = 1 - \frac{6}{11} = \frac{5}{11}$$

Remark If $a + ar + ar^2 + ... + ar^{r-1} + ...$, where |r| < 1, then sum of this infinite G.P.

is given by $\frac{a}{1-r}$ (Refer A.1.3 of Class XI Text book).

Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is incorrectly set up, it produces only 40% acceptable items. Past experience shows that 80% of the set ups are correctly done. If after a certain set up, the machine produces 2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B represent the event of correct set up and B_2 represent the event of incorrect setup

Now
$$P(B_1) = 0.8, P(B_2) = 0.2$$

$$P(A|B_1) = 0.9 \times 0.9 \text{ and } P(A|B_2) = 0.4 \times 0.4$$

$$P(B_1) = \frac{P(B_1) P(A|B_1)}{P(B_1) P(A|B_1) + P(B_2) P(A|B_2)}$$

$$= \frac{0.8 \times 0.9 \times 0.9}{0.8 \times 0.9 \times 0.9 \times 0.9 + 0.2 \times 0.4 \times 0.4} = \frac{648}{680} = 0.95$$

Summary

The salient features of the chapter are -

The conditional probability of an event E, given the occurrence of the event F

is given by
$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$
, $P(F) \neq 0$

- $0 \le P(E|F) \le 1$,
- P(E'|F) = 1 P(E|F)

 $P((E \cup F)|G) = P(E|G) + P(F|G) - P((E \cap F)|G)$

- P(E \cap F) = P(E) P(F|E), P(E) \neq 0
 - $P(E \cap F) = P(F) P(E|F), P(F) \neq 0$
- If E and F are independent, then

$$P(E \cap F) = P(E) P(F)$$

$$P(E|F) = P(E), P(F) \neq 0$$

$$P(F|E) = P(F), P(E) \neq 0$$

Theorem of total probability

Let $\{E_1, E_2, ..., E_n\}$ be a partition of a sample space and suppose that each of $E_1, E_2, ..., E_n$ has nonzero probability. Let A be any event associated with S, then

$$P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + ... + P(E_n) P(A|E_n)$$

Bayes' theorem If E_1 , E_2 , ..., E_n are events which constitute a partition of sample space S, i.e. E_1 , E_2 , ..., E_n are pairwise disjoint and $E_1 \cup E_2 \cup ... \cup E_n = S$ and A be any event with nonzero probability, then

$$P(E_i | A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^{n} P(E_j)P(A|E_j)}$$

- A random variable is a real valued function whose domain is the sample space of a random experiment.
- The probability distribution of a random variable X is the system of numbers

$$\mathbf{X}$$
 : x_1 x_2 ... x_n

$$\mathbf{P}(\mathbf{X}) \quad : \qquad p_1 \qquad p_2 \qquad \dots \qquad p_n$$

where,
$$p_i > 0$$
, $\sum_{i=1}^n p_i = 1$, $i = 1, 2, ..., n$

Let X be a random variable whose possible values $x_1, x_2, x_3, ..., x_n$ occur with probabilities $p_1, p_2, p_3, ..., p_n$ respectively. The mean of X, denoted by μ , is

the number
$$\sum_{i=1}^{n} x_i p_i$$
.

The mean of a random variable X is also called the expectation of X, denoted by E(X).

Let X be a random variable whose possible values $x_1, x_2, ..., x_n$ occur with probabilities $p(x_1), p(x_2), ..., p(x_n)$ respectively.

Let $\mu = E(X)$ be the mean of X. The variance of X, denoted by Var (X) or

$$\sigma_x^2$$
, is defined as $\sigma_x^2 = \text{Var}(X) = \sum_{i=1}^n (x_i - \mu)^2 p(x_i)$

or equivalently $\sigma_x^2 = E (X - \mu)^2$

The non-negative number

$$\sigma_{x} = \sqrt{\operatorname{Var}(X)} = \sqrt{\sum_{i=1}^{n} (x_{i} - \mu)^{2}} p(x_{i})$$

is called the standard deviation of the random variable X.

- Var $(X) = E(X^2) [E(X)]^2$
- Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
 - (i) There should be a finite number of trials.
 - (ii) The trials should be independent.
 - (iii) Each trial has exactly two outcomes: success or failure.
 - (iv) The probability of success remains the same in each trial.

For Binomial distribution B
$$(n, p)$$
, P $(X = x) = {}^{n}C_{x} q^{n-x} p^{x}$, $x = 0, 1,..., n$ $(q = 1 - p)$