Miscellaneous Examples

Example 28 Show that the set of letters needed to spell "CATARACT" and the set of letters needed to spell "TRACT" are equal.

Solution Let X be the set of letters in "CATARACT". Then

$$X = \{ C, A, T, R \}$$

Let Y be the set of letters in "TRACT". Then

$$Y = \{ T, R, A, C, T \} = \{ T, R, A, C \}$$

Since every element in X is in Y and every element in Y is in X. It follows that X = Y.

Example 29 List all the subsets of the set $\{-1, 0, 1\}$.

Solution Let $A = \{-1, 0, 1\}$. The subset of A having no element is the empty set ϕ . The subsets of A having one element are $\{-1\}$, $\{0\}$, $\{1\}$. The subsets of A having two elements are $\{-1, 0\}$, $\{-1, 1\}$, $\{0, 1\}$. The subset of A having three elements of A is A itself. So, all the subsets of A are ϕ , $\{-1\}$, $\{0\}$, $\{1\}$, $\{-1, 0\}$, $\{-1, 1\}$, and $\{-1, 0, 1\}$.

Example 30 Show that $A \cup B = A \cap B$ implies A = B

Solution Let $a \in A$. Then $a \in A \cup B$. Since $A \cup B = A \cap B$, $a \in A \cap B$. So $a \in B$. Therefore, $A \subset B$. Similarly, if $b \in B$, then $b \in A \cup B$. Since

 $A \cup B = A \cap B$, $b \in A \cap B$. So, $b \in A$. Therefore, $B \subset A$. Thus, A = B

Example 31 For any sets A and B, show that $P(A \cap B) = P(A) \cap P(B).$

Solution Let $X \in P$ ($A \cap B$). Then $X \subset A \cap B$. So, $X \subset A$ and $X \subset B$. Therefore, $X \in P(A)$ and $X \in P(B)$ which implies $X \in P(A) \cap P(B)$. This gives $P(A \cap B)$ $\subset P(A) \cap P(B)$. Let $Y \in P(A) \cap P(B)$. Then $Y \in P(A)$ and $Y \in P(B)$. So, $Y \subset A$ and $Y \subset B$. Therefore, $Y \subset A \cap B$, which implies $Y \in P(A \cap B)$. This gives $P(A) \cap P(B) \subset P(A \cap B)$ Hence $P(A \cap B) = P(A) \cap P(B)$.

Example 32 A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product A and 450 consumers like product B, what is the least number that must have liked both products?

Solution Let U be the set of consumers questioned, S be the set of consumers who liked the product A and T be the set of consumers who like the product B. Given that

n(U) = 1000, n(S) = 720, n(T) = 450 $n(S \cup T) = n(S) + n(T) - n(S \cap T)$ So $= 720 + 450 - n (S \cap T) = 1170 - n (S \cap T)$

Therefore, n ($S \cup T$) is maximum when n ($S \cap T$) is least. But $S \cup T \subset U$ implies $n(S \cup T) \le n(U) = 1000$. So, maximum values of $n(S \cup T)$ is 1000. Thus, the least value of $n(S \cap T)$ is 170. Hence, the least number of consumers who liked both products

Example 33 Out of 500 car owners investigated, 400 owned car A and 200 owned car B, 50 owned both A and B cars. Is this data correct?

Solution Let U be the set of car owners investigated, M be the set of persons who owned car A and S be the set of persons who owned car B.

 $n(U) = 500, n(M) = 400, n(S) = 200 \text{ and } n(S \cap M) = 50.$

 $n(S \cup M) = n(S) + n(M) - n(S \cap M) = 200 + 400 - 50 = 550$ Given that

But $S \cup M \subset U$ implies $n (S \cup M) \le n (U)$.

This is a contradiction. So, the given data is incorrect.

Example 34 A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

MATHEMATICS

26

Solution Let F, B and C denote the set of men who received medals in football, basketball and cricket, respectively.

Then
$$n(F) = 38$$
, $n(B) = 15$, $n(C) = 20$
 $n(F \cup B \cup C) = 58$ and $n(F \cap B \cap C) = 3$
Therefore, $n(F \cup B \cup C) = n(F) + n(B) + n(C) - n(F \cap B) - n(F \cap C) - n(B \cap C) + n(C) + n(C) - n(C) + n(C) +$

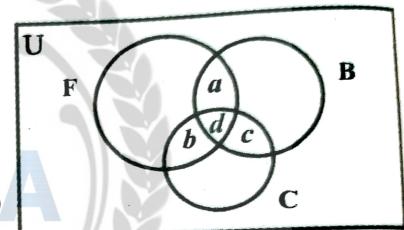


Fig 1.14

$$n (F \cap B \cap C)$$
,
gives $n (F \cap B) + n (F \cap C) + n (B \cap C) = 18$
Consider the Venn diagram as given in Fig 1.14

Here, a denotes the number of men who got medals in football and basketball only, be denotes the number of men who got medals in football and cricket only, c denotes the number of men who got medals in basket ball and cricket only and d denotes the number of men who got medal in all the three. Thus, d = n (F \cap B \cap C) = 3 and a + d + b + d + c + d = 18

Therefore a+b+c=9,

which is the number of people who got medals in exactly two of the three sports.

Summary

This chapter deals with some basic definitions and operations involving sets. These are summarised below:

- A set is a well-defined collection of objects.
- ✓ A set which does not contain any element is called *empty set*.
- A set which consists of a definite number of elements is called *finite set*, otherwise, the set is called *infinite set*.
- ✓ Two sets A and B are said to be equal if they have exactly the same elements.
- A set A is said to be subset of a set B, if every element of A is also an element of B. Intervals are subsets of R.
- A power set of a set A is collection of all subsets of A. It is denoted by P(A).

The union of two sets A and B is the set of all those elements which are either in A or in B. The intersection of two sets A and B is the set of all elements which are

common. The difference of two sets A and B in this order is the set of elements which belong to A but not to B.

The complement of a subset A of universal set U is the set of all elements of U

which are not the elements of A.

For any two sets A and B, $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

 $n (A \cup B) = n (A) + n (B).$

• If A and B are finite sets such that $A \cap B = \emptyset$, then

If $A \cap B \neq \emptyset$, then $n(A \cup B) = n(A) + n(B) - n(A \cap B)$