SYLLABUS
Master of Computer Applications (MCA) is a two-year professional Master's Degree in computer science awarded in India. The post graduate program is designed to meet the growing demand for qualified professionals in the field of Information Technology.
-- Download Syllabus S1 S2 --
-- Download Syllabus S3 S4 --
-- Download Syllabus - S2 --
              VIEWS
            
            SEMESTER I
Questions
- >> Advanced Data Structure (First Semester MCA(2year) Exam July 2020)
 - >> Advanced Data Structure (First Semester MCA(2year) Exam December 2021)
 - >> Advanced Software Engineering (First Semester MCA(2year) Exam July 2020)
 - >> Advanced Software Engineering (First Semester MCA(2year) Exam December 2021)
 - >> Digital Fundamentals (First Semester MCA(2year) Exam July 2020)
 - >> Digital Fundamentals (First Semester MCA(2year) Exam December 2021)
 - >> Mathematics Foundations for Computing (First Semester MCA(2year) Exam July 2020)
 - >> 2022 - 23 Mathematics Foundations for Computing, Digital Fundamentals & Computer Architecture, Advanced Data Structure, Advanced Software Engineering (First Semester MCA (Two Year) Degree(R,S) Examination December/January
 
Mathematical Foundations for Computing
Digital Fundamentals & Computer Architecture
Advanced Data Structures
Advanced Software Engineering
SEMESTER II
Questions
Syllabus Qn & Answers
Advanced Database Management Systems
Advanced Computer Networks
- Module Full
 - Module I
 - >> PDF 1
 - >> PPT 1
 - >> PDF 1
 - >> DNS PDF 1
 - >> DNS PDF 2
 - >> FTP PDF
 - >> Packet SwitchingTechniques PDF
 - >> SMTP and POP PDF
 - >> Module 1 part 1
 - >> Module 1 part 2
 - Module 2
 - Module 3
 - >> Module 3
 - >> DSV
 - >> Routing Information Protocol
 - >> OSPF
 - >> Border Gateway Protocol
 - >> LINK STATE ROUTING
 - >> Multicast routing
 - Module 4
 - >> Switches and bridge
 - >> data link layer
 - >> Data_Encoding
 - >> Media, Signal strengthand interference
 - >> Router,MAC,ARP,FIB
 - Module 5
 
Elective AOS
Elective AI
SEMESTER III
Syllabus
Questions -Series 1
- >> CYBER SECURITY & CRYPTOGRAPHY.pdf
 - >> DATA SCIENCE and MACHINE LEARNING.PDF
 - >> Design and Analysis of Algorithms.PDF
 - >> DEEP LEARNING.pdf
 
Questions -Series 1
Questions - S3 2022 Exam
Q&A Syllabus
- >> CRYPTO_1.pdf
 - >> CRYPTO_2.pdf
 - >> CRYPTO_3.pdf
 - >> CRYPTO_4.pdf
 - >> CRYPTO_5.pdf
 - >> CRYPTO_6.pdf
 - >> CRYPTO_7.pdf
 - >> CRYPTO_8.pdf
 
Data Science & Machine Learning
- >> DS_FULL_LECTURE_NOTES (Dr V N Krishnachandran).pdf
 - >> Data Science and Machine Learning (Vasudevan T V).pdf
 - >> Module 3
 - >> Module 4
 - >> Module 5
 
- >> Module 1.1 PPT
 - >> Module 1.2 PPT
 - >> Module 1 Univariate and Multivariate Data Exploration.pdf
 - >> Module 1 data science process.pdf
 - >> Module 1 data science.pdf
 - >> Module 1 data visualization.pdf
 
- >> Module 3.1
 - >> Module 3.2
 - >> Module 3.1 PDF (T)
 - >> Module 3.2 PDF (T)
 - >> Linear Regression.pdf
 - >> Multiple Linear Regression.pdf
 
Design & Analysis of Algorithms
- >> Module 2
 - >> Module 2 Greedy Strategy.pdf
 - >> Module 2 Knapsack,Prim's.pdf
 - >> Module 2 Kruskals,Job sequencing.pdf
 - >> Module 2 Dynamic Programming .pdf
 - >> Module 2 All pair shortest path,TSP.pdf
 - >> Module 2 Bellman-Ford Algorithm.pdf
 
- >> Backtracking,N Queens problem.pdf
 - >> Branch and Bound, 8-Puzzle.pdf
 - >> Sum of Subset_1.pdf
 - >> Sum of subset_2.pdf
 
CYBER SECURITY & CRYPTOGRAPHY
- >> CRYPTO_M1_1 (T)
 - >> CRYPTO_M1_2 (T)
 - >> CRYPTO_M2_1 (T)
 - >> CRYPTO_M2_2 (T)
 - >> CRYPTO_M2_3 (T)
 - >> CRYPTO_M2_4 (T)
 - >> CRYPTO_M2_5 (T)
 - >> CRYPTO_M5_1 (T)
 - >> Module 1
 - >> Module 2
 - >> Module 3
 - >> Module 4
 - >> Module 5
 
DEEP LEARNING
- >> Module 2 DL-dropout layer.pdf
 - >> Module 2 DROPOUT.pdf
 - >> Module 2 TensorFlow.pdf
 - >> Module 2 Tensorflow Basics.pdf
 - >> Module 2 UNDERFITTINGAND EXTRA NOTES.pdf
 - >> Module 2 Data visualilzation.pptx
 - >> Module 2 VALIDATION CURVE.pptx
 - >> Module 2 validation curve_doc.docx
 
- >> Module 3 CNN.docx
 - >> Module 3 CNNs are a class of Deep Neural Networks .docx
 - >> Module 3 Casestudy .docx
 - >> Module3 Casestudy-AlexNet .docx
 - >> Module3 Casestudy-LeNet.docx
 - >> Module3 Convolution.docx
 
SOCIAL NETWORKS
- >> SNA Mod 1 Semantic Web.pdf
 - >> SNA Mod 1 Social Network Analysis.pdf
 - >> SNA Mod 2 Electronic Sources for Network Analysis.pdf
 - >> SNA Mod 3 Modelling and Aggregating.pdf
 - >> SNA Mod 4 Graph Structure of Facebook.pdf
 - >> SNA Mod 4 Graph Structure of the Web.pdf
 - >> SNA Mod 5 Google.pdf
 - >> SNA Mod 5 Search Engines.pdf
 
SEMESTER IV
Main Project
An project is built by students individually by Students on Relevant topics
update soon
.....